Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Biết hệ số của số hạng chứa \({x^2}\) trong khai triển \({\left( {1 + 4x} \right)^n}\) là 3040. Số

Câu hỏi số 373953:
Vận dụng

Biết hệ số của số hạng chứa \({x^2}\) trong khai triển \({\left( {1 + 4x} \right)^n}\) là 3040. Số tự nhiên \(n\) bằng bao nhiêu? 

Đáp án đúng là: D

Quảng cáo

Câu hỏi:373953
Phương pháp giải

Sử dụng khai triển nhị thức Newton: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}} \).

Giải chi tiết

\({\left( {1 + 4x} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{{\left( {4x} \right)}^k}{1^{n - k}}}  = \sum\limits_{k = 0}^n {C_n^k{4^k}{x^k}} \).

Hệ số của số hạng chứa \({x^2}\) trong khai triển trên là \(C_n^2{4^2} = 16C_n^2\).

Theo bài ra ta có: \(16C_n^2 = 3040 \Leftrightarrow C_n^2 = 190 \Leftrightarrow \dfrac{{n!}}{{2!\left( {n - 2} \right)!}} = 190\).

\( \Leftrightarrow n\left( {n - 1} \right) = 380 \Leftrightarrow {n^2} - n - 380 = 0 \Leftrightarrow \left[ \begin{array}{l}n = 20\,\,\,\,\,\,\left( {tm} \right)\\n =  - 19\,\,\left( {ktm} \right)\end{array} \right.\)

Vậy \(n = 20\).

Chọn D.

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com