Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm \(m\) để hàm số \(y = \frac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1\) có \(y' \le

Câu hỏi số 374577:
Vận dụng cao

Tìm \(m\) để hàm số \(y = \frac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1\) có \(y' \le 0\,\,\forall x \in R\)

Đáp án đúng là: C

Quảng cáo

Câu hỏi:374577
Phương pháp giải

Tính đạo hàm của hàm số.

Giải bpt \(y' \le 0\,\,\forall x \in R\)

Giải chi tiết

\(\begin{array}{l}y = \frac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1\\ \Rightarrow y' = m{x^2} - 2mx + 3m - 1\\y' \le 0\,\,\forall x \in R \Rightarrow m{x^2} - 2mx + 3m - 1 \le 0\,\,\forall x \in R\end{array}\)

TH1: m = 0, khi đó \(BPT \Leftrightarrow  - 1 \le 0\) , đúng \(\forall x \in R\)

TH2: \(\begin{array}{l}m \ne 0 \Leftrightarrow y' \le 0\,\,\forall x \in R \Leftrightarrow \left\{ \begin{array}{l}a = m < 0\\\Delta ' = {m^2} - m\left( {3m - 1} \right) \le 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m < 0\\ - 2{m^2} + m \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 0\\\left[ \begin{array}{l}m \le 0\\m \ge \frac{1}{2}\end{array} \right.\end{array} \right. \Leftrightarrow m < 0\end{array}\)

Kết hợp cả 2 trường hợp ta có \(m \le 0\) là những giá trị cần tìm.

Chọn C.

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com