Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm các tiệm cận đường và ngang của đồ thị mỗi hàm số sau:

Tìm các tiệm cận đường và ngang của đồ thị mỗi hàm số sau:

Trả lời cho các câu 1, 2, 3, 4 dưới đây:

Câu hỏi số 1:
Nhận biết

\(y = \dfrac{{2x - 1}}{{x + 2}}\) 

Đáp án đúng là: A

Câu hỏi:375649
Phương pháp giải

- Tiệm cận đứng: Đường thẳng \(x = {x_0}\) được gọi là tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) nếu nó thỏa mãn một trong 4 điều kiện sau: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to x_0^ + } y =  + \infty \\\mathop {\lim }\limits_{x \to x_0^ + } y =  - \infty \\\mathop {\lim }\limits_{x \to x_0^ - } y =  + \infty \\\mathop {\lim }\limits_{x \to x_0^ - } y =  - \infty \end{array} \right.\)

- Tiệm cận ngang: Đường thẳng \(y = {y_0}\) được gọi là tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\) nếu nó thỏa mãn một trong 2 điều kiện sau: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to  + \infty } y = {y_0}\\\mathop {\lim }\limits_{x \to  - \infty } y = {y_0}\end{array} \right.\)

Giải chi tiết

Ta có: \(\mathop {\lim }\limits_{x \to  - {2^ + }} \dfrac{{2x - 1}}{{x + 2}} =  - \infty ,\) \(\mathop {\lim }\limits_{x \to  - {2^ - }} \dfrac{{2x - 1}}{{x + 2}} =  + \infty \) nên đường thẳng \(x = 2\) là tiệm cận đứng của đồ thị hàm số.

Vì \(\mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{2x - 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{2 - \dfrac{1}{x}}}{{1 + \dfrac{2}{x}}} = 2\)  nên đường thẳng \(y = 2\) là tiệm cận ngang của đồ thị hàm số.

Đáp án cần chọn là: A

Câu hỏi số 2:
Nhận biết

\(y = \dfrac{{3 - 2x}}{{3x + 1}}\)

Đáp án đúng là: B

Câu hỏi:375650
Phương pháp giải

- Tiệm cận đứng: Đường thẳng \(x = {x_0}\) được gọi là tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) nếu nó thỏa mãn một trong 4 điều kiện sau: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to x_0^ + } y =  + \infty \\\mathop {\lim }\limits_{x \to x_0^ + } y =  - \infty \\\mathop {\lim }\limits_{x \to x_0^ - } y =  + \infty \\\mathop {\lim }\limits_{x \to x_0^ - } y =  - \infty \end{array} \right.\)

- Tiệm cận ngang: Đường thẳng \(y = {y_0}\) được gọi là tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\) nếu nó thỏa mãn một trong 2 điều kiện sau: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to  + \infty } y = {y_0}\\\mathop {\lim }\limits_{x \to  - \infty } y = {y_0}\end{array} \right.\)

Giải chi tiết

Từ  \(\mathop {\lim }\limits_{x \to {{\left( { - \dfrac{1}{3}} \right)}^ + }} \dfrac{{3 - 2x}}{{3x + 1}} =  + \infty ;\) \(\mathop {\lim }\limits_{x \to {{\left( { - \dfrac{1}{3}} \right)}^ - }} \dfrac{{3 - 2x}}{{3x + 1}} =  - \infty \), ta có \(x =  - \dfrac{1}{3}\) là tiệm cận đứng

Vì \(\mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{3 - 2x}}{{3x + 1}} = \mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{\dfrac{3}{x} - 2}}{{3 + \dfrac{1}{x}}} =  - \dfrac{2}{3}\)  nên đường thẳng \(y =  - \dfrac{2}{3}\) là tiệm cận ngang.

Đáp án cần chọn là: B

Câu hỏi số 3:
Nhận biết

\(y = \dfrac{5}{{2 - 3x}}\)

Đáp án đúng là: D

Câu hỏi:375651
Phương pháp giải

- Tiệm cận đứng: Đường thẳng \(x = {x_0}\) được gọi là tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) nếu nó thỏa mãn một trong 4 điều kiện sau: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to x_0^ + } y =  + \infty \\\mathop {\lim }\limits_{x \to x_0^ + } y =  - \infty \\\mathop {\lim }\limits_{x \to x_0^ - } y =  + \infty \\\mathop {\lim }\limits_{x \to x_0^ - } y =  - \infty \end{array} \right.\)

- Tiệm cận ngang: Đường thẳng \(y = {y_0}\) được gọi là tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\) nếu nó thỏa mãn một trong 2 điều kiện sau: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to  + \infty } y = {y_0}\\\mathop {\lim }\limits_{x \to  - \infty } y = {y_0}\end{array} \right.\)

Giải chi tiết

Vì  \(\mathop {\lim }\limits_{x \to {{\left( {\dfrac{2}{3}} \right)}^ + }} \dfrac{5}{{2 - 3x}} =  - \infty ;\) \(\mathop {\lim }\limits_{x \to {{\left( {\dfrac{2}{3}} \right)}^ - }} \dfrac{5}{{2 - 3x}} =  + \infty \) nên \(x = \dfrac{2}{3}\) là tiệm cận đứng,

Do  \(\mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{5}{{2 - 3x}} = 0\) nên \(y = 0\) là tiệm cận ngang.

Đáp án cần chọn là: D

Câu hỏi số 4:
Nhận biết

\(y = \dfrac{{ - 4}}{{x + 1}}\)

Đáp án đúng là: A

Câu hỏi:375652
Phương pháp giải

- Tiệm cận đứng: Đường thẳng \(x = {x_0}\) được gọi là tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) nếu nó thỏa mãn một trong 4 điều kiện sau: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to x_0^ + } y =  + \infty \\\mathop {\lim }\limits_{x \to x_0^ + } y =  - \infty \\\mathop {\lim }\limits_{x \to x_0^ - } y =  + \infty \\\mathop {\lim }\limits_{x \to x_0^ - } y =  - \infty \end{array} \right.\)

- Tiệm cận ngang: Đường thẳng \(y = {y_0}\) được gọi là tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\) nếu nó thỏa mãn một trong 2 điều kiện sau: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to  + \infty } y = {y_0}\\\mathop {\lim }\limits_{x \to  - \infty } y = {y_0}\end{array} \right.\)

Giải chi tiết

Do  \(\mathop {\lim }\limits_{x \to  - {1^ + }} \dfrac{{ - 4}}{{x + 1}} =  - \infty ;\mathop {\lim }\limits_{x \to  - {1^ - }} \dfrac{{ - 4}}{{x + 1}} =  + \infty \)  nên \(x\; =  - 1\) là tiệm cận đứng.

Vì \(\mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{ - 4}}{{x + 1}} = 0\) nên \(y = 0\) là tiệm cận ngang.

Đáp án cần chọn là: A

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com