Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện \(ABCD\). Gọi \(M,\,N\)lần lượt là trung điểm của các cạnh \(AB\), \(CD\). \(G\)là

Câu hỏi số 376049:
Vận dụng

Cho tứ diện \(ABCD\). Gọi \(M,\,N\)lần lượt là trung điểm của các cạnh \(AB\), \(CD\). \(G\)là trung điểm của \(MN\), \(I\)là giao điểm của đường thẳng \(AG\)và mặt phẳng \(\left( {BCD} \right)\). Tính tỉ số \(\dfrac{{GI}}{{GA}}\)?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:376049
Phương pháp giải

Vẽ hình sau đó sử dụng định lý Ta-lét trong tam giác.

Giải chi tiết

Trog \(\left( {ABN} \right)\) qua \(M\)kẻ đường thẳng song song với \(AI\) cắt \(BN\) tại \(J\).

Xét tam giác \(MNJ\) ta có: \(\left\{ \begin{array}{l}GI//MJ\\GN = GM\,\left( {gt} \right)\end{array} \right. \Rightarrow GI = \dfrac{1}{2}.MJ\,\,\,\,\left( 1 \right)\)

Xét tam giác \(BAI\) ta có: \(\left\{ \begin{array}{l}MJ//AI\\MA = MB\end{array} \right. \Rightarrow MJ = \dfrac{1}{2}.AI\,\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\& \left( 2 \right) \Rightarrow GI = \dfrac{1}{4}.AI \Leftrightarrow \dfrac{{GI}}{{GA}} = \dfrac{1}{3}.\)

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com