Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải phương trình \(3\sin x + 2\cos x = 2 + 3\tan x.\)

Câu hỏi số 378089:
Vận dụng

Giải phương trình \(3\sin x + 2\cos x = 2 + 3\tan x.\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:378089
Giải chi tiết

\(3\sin x + 2\cos x = 2 + 3\tan x\,\,\,\left( 1 \right)\).

Điều kiện: \(\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

\(\begin{array}{l}\left( 1 \right)\,\,\, \Leftrightarrow 3\sin x\cos x + 2{\cos ^2}x = 2\cos x + 3\sin x\\ \Leftrightarrow 3\sin x\cos x - 3\sin x + 2{\cos ^2}x - 2\cos x = 0\\ \Leftrightarrow 3\sin x\left( {\cos x - 1} \right) + 2\cos x\left( {\cos x - 1} \right) = 0\\ \Leftrightarrow \left( {3\sin x + 2\cos x} \right)\left( {\cos x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}3\sin x + 2\cos x = 0\\\cos x - 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3\tan x + 2 = 0\\\cos x = 1\end{array} \right.\,\,\,\,\\ \Leftrightarrow \left[ \begin{array}{l}\tan x = \frac{{ - 2}}{3}\\\cos x = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \arctan \frac{{ - 2}}{3} + k\pi     \left( {tm} \right)\\x = k2\pi \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

Vậy \(S = \left\{ {k2\pi ,\,\,\arctan \frac{-2}{3} + k\pi ,\,\,k \in \mathbb{Z}} \right\}\).

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com