Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

1) Cho tam giác \(ABC\)  vuông tại \(A\) có \(AB = 3\,cm;\,AC = 4\,cm\). Kẻ đường cao \(AH\,\,\,\left( {H

Câu hỏi số 378134:
Vận dụng

1) Cho tam giác \(ABC\)  vuông tại \(A\) có \(AB = 3\,cm;\,AC = 4\,cm\). Kẻ đường cao \(AH\,\,\,\left( {H \in BC} \right).\) Tính \(BH,\,\,CH.\)

2) Cho tam giác \(ABC\)  có \(AB = 3,6\,cm;\,\,AC = 4,8\,cm;\,\,\,BC = 6\,cm.\) Tính các góc \(B,\,\,C\)  (viết kết quả dạng độ, phút, giây) và đường cao \(AH\)  của tam giác \(ABC.\)

Quảng cáo

Câu hỏi:378134
Phương pháp giải

1) Áp dụng hệ thức lượng tròn tam giác vuông.

2) Chứng minh tam giác ABC vuông tại A qua định lý Pytago đảo; tính các góc B,C qua sin của chúng; tính AH qua hệ thức lượng trong tam giác.

Giải chi tiết

1) Cho tam giác \(ABC\)  vuông tại \(A\)\(AB = 3\,cm;\,AC = 4\,cm\). Kẻ đường cao \(AH\,\,\,\left( {H \in BC} \right).\) Tính \(BH,\,\,CH.\)

+) Tam giác ABC vuông tại A nên theo định lý Pytago ta có:

\(B{C^2} = A{B^2} + A{C^2} = {3^2} + {4^2} = 25 \Rightarrow BC = \sqrt {25}  = 5\left( {cm} \right)\)

+) Theo hệ thức lượng trong tam giác vuông ta có:

\(A{B^2} = BH.BC \Rightarrow BH = \frac{{A{B^2}}}{{BC}} = \frac{{{3^2}}}{5} = \frac{9}{5} = 1,8\left( {cm} \right)\)

\( \Rightarrow CH = BC - BH = 5 - 1,8 = 3,2\left( {cm} \right)\)

Vậy \(BH = 1,8cm;\,CH = 3,2cm\)

2) Cho tam giác \(ABC\)  có \(AB = 3,6\,cm;\,\,AC = 4,8\,cm;\,\,\,BC = 6\,cm.\) Tính các góc \(B,\,\,C\)  (viết kết quả dạng độ, phút, giây) và đường cao \(AH\)  của tam giác \(ABC.\)  

+)Ta thấy \(A{B^2} + A{C^2} = 3,{6^2} + 4,{8^2} = 36 = {6^2} = B{C^2}\)

\( \Rightarrow \Delta ABC\)vuông tại A (theo định lý Pytago đảo)

+) \(\sin \widehat B = \frac{{AC}}{{BC}} = \frac{{4,8}}{6} = \frac{4}{5} \Rightarrow \widehat B = {53^0}7'48,37''\)

+) \(\sin \widehat C = \frac{{AB}}{{BC}} = \frac{{3,6}}{6} = \frac{3}{5} \Rightarrow \widehat C = {36^0}52'11,63''\)

+) Theo hệ thức lượng ta có: \(AH.BC = AB.AC \Rightarrow AH = \frac{{AB.AC}}{{BC}} = \frac{{3,6.4,8}}{6} = 2,88\left( {cm} \right)\)

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com