Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(d\) có phương trình \(d:3x - y - 3 = 0\). Phép

Câu hỏi số 379834:
Vận dụng

Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(d\) có phương trình \(d:3x - y - 3 = 0\). Phép biến hình có được bằng cách thực hiện liên tiếp phép vị tự tâm \(I\left( {2;3} \right)\) tỉ số \(k =  - 1\) và phép tịnh tiến theo vectơ \(\overrightarrow v \left( {1;3} \right)\) biến đường thẳng \(d\) thành đường thẳng \(d'\). Viết phương trình đường thẳng \(d'\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:379834
Phương pháp giải

Sử dụng biểu thức tọa độ của phép vị tự tâm \(I\left( {a;b} \right)\) biến \(M\left( {x;y} \right)\) thành \(M'\left( {x';y'} \right)\) thì \(\left\{ \begin{array}{l}x' = kx + \left( {1 - k} \right)a\\y' = ky + \left( {1 - k} \right)b\end{array} \right.\)

Sử dụng biểu thức tọa độ của phép tịnh tiến theo véc tơ \(\overrightarrow v  = \left( {a;b} \right)\) biến \(M\left( {x;y} \right)\) thành \(M'\left( {x';y'} \right)\) thì \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\)

Giải chi tiết

Gọi \(M\left( {x;y} \right) \in d:3x - y - 3 = 0\)

Gọi \(M'\left( {x';y'} \right)\) là ảnh của \(M\left( {x;y} \right)\) qua phép vị tự tâm \(I\left( {2;3} \right)\) tỉ số \(k =  - 1\).

Khi đó ta có : \(\left\{ \begin{array}{l}x' =  - x + \left( {1 - \left( { - 1} \right)} \right).2\\y' =  - y + \left( {1 - \left( { - 1} \right)} \right).3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - x' + 4\\y =  - y' + 6\end{array} \right.\)  nên \(M\left( { - x' + 4; - y' + 6} \right)\)

Mà \(M\left( { - x' + 4; - y' + 6} \right) \in d:3x - y - 3 = 0\) nên ta có :

 \(\begin{array}{l}3\left( { - x' + 4} \right) - \left( { - y' + 6} \right) - 3 = 0\\ \Leftrightarrow  - 3x' + 12 + y' - 6 - 3 = 0\\ \Leftrightarrow  - 3x' + y' + 3 = 0\\ \Leftrightarrow 3x' - y' - 3 = 0\end{array}\)

Do đó, ảnh của đường thẳng \(d:3x - y - 3 = 0\) qua phép vị tự tâm \(I\left( {2;3} \right)\) tỉ số \(k =  - 1\) là đường thẳng \(d':3x - y - 3 = 0\)

Ta tìm ảnh của đường thẳng \(d'\) qua phép tịnh tiến theo véc tơ \(\overrightarrow v \left( {1;3} \right)\)

Gọi \(N\left( {{x_1};{y_1}} \right) \in d':3x - y - 3 = 0\) và \(N'\left( {{x_2};{y_2}} \right)\) là ảnh của qua \({T_{\overrightarrow v }}\)

Khi đó ta có:  \(\left\{ \begin{array}{l}{x_2} = {x_1} + 1\\{y_2} = {y_1} + 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2} - 1\\{y_1} = {y_2} - 3\end{array} \right. \Rightarrow N\left( {{x_2} - 1;{y_2} - 3} \right)\)

Thay tọa độ \(N\left( {{x_2} - 1;{y_2} - 3} \right)\) vào phương trình đường thẳng \(d':3x - y - 3 = 0\) ta được:

\(\begin{array}{l}3\left( {{x_2} - 1} \right) - \left( {{y_2} - 3} \right) - 3 = 0\\ \Leftrightarrow 3{x_2} - {y_2} - 3 = 0\end{array}\)

Vậy ảnh của đường thẳng \(d'\) qua phép tịnh tiến theo véc tơ \(\overrightarrow v \left( {1;3} \right)\) là đường thẳng \({d_1}:3x - y - 3 = 0.\)

Hay đường thẳng cần tìm là: \({d_1}:3x - y - 3 = 0.\)

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com