Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang (\(AB//CD,\,\,AB = 2CD\)). Gọi \(M\) là trung điểm
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang (\(AB//CD,\,\,AB = 2CD\)). Gọi \(M\) là trung điểm của cạnh \(SC\).
a) Xác định giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\).
b) Xác định giao điểm \(K\) của đường thẳng \(AM\) với \(mp\left( {SBD} \right)\). Tính tỉ số \(\dfrac{{AK}}{{AM}}\).
Quảng cáo
a) Sử dụng định lí \(\left\{ \begin{array}{l}a \subset \left( P \right)\\b \subset \left( Q \right)\\\left( P \right) \cap \left( Q \right) = d\\a//b\end{array} \right. \Rightarrow d//a//b\) .
b) Phương pháp xác định giao điểm của đường thẳng với mặt phẳng.
- Tìm mặt phẳng phụ \(\left( P \right)\) chứa đường thẳng \(a\).
- Tìm giao tuyến \(d\) của \(\left( P \right)\) với \(\left( \alpha \right)\) đã cho.
- Tìm giao điểm của \(d\) với \(a\).
Sử dụng định lí Ta-let suy ra tỉ số.
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













