Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang (\(AB//CD,\,\,AB = 2CD\)). Gọi \(M\) là trung điểm

Câu hỏi số 379859:
Vận dụng

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang (\(AB//CD,\,\,AB = 2CD\)). Gọi \(M\) là trung điểm của cạnh \(SC\).

      a) Xác định giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\).

      b) Xác định giao điểm \(K\) của đường thẳng \(AM\) với \(mp\left( {SBD} \right)\). Tính tỉ số \(\dfrac{{AK}}{{AM}}\).

Quảng cáo

Câu hỏi:379859
Phương pháp giải

a) Sử dụng định lí \(\left\{ \begin{array}{l}a \subset \left( P \right)\\b \subset \left( Q \right)\\\left( P \right) \cap \left( Q \right) = d\\a//b\end{array} \right. \Rightarrow d//a//b\) .

b) Phương pháp xác định giao điểm của đường thẳng với mặt phẳng.

- Tìm mặt phẳng phụ \(\left( P \right)\) chứa đường thẳng \(a\).

- Tìm giao tuyến \(d\) của \(\left( P \right)\) với \(\left( \alpha  \right)\) đã cho.

- Tìm giao điểm của \(d\) với \(a\).

Sử dụng định lí Ta-let suy ra tỉ số.

Giải chi tiết

a) Xác định giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SCD} \right)\).

\(S\) là điểm chung của \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\).

\(AB//CD;\,\,AB \subset \left( {SAB} \right);\,\,CD \subset \left( {SCD} \right)\).

Suy ra \(\left( {SAB} \right) \cap \left( {SCD} \right) = Sx//AB//CD\).

b) Xác định giao điểm \(K\) của đường thẳng \(AM\) với \(mp\left( {SBD} \right)\). Tính tỉ số \(\dfrac{{AK}}{{AM}}\).

Ta có: \(AM \subset \left( {SAC} \right)\).

Dễ thấy \(S \in \left( {SAC} \right) \cap \left( {SBD} \right)\)

Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Khi đó \(O \in AC \subset \left( {SAC} \right),O \in BD \subset \left( {SBD} \right)\) nên \(O \in \left( {SAC} \right) \cap \left( {SBD} \right)\).

Do đó \(SO = \left( {SAC} \right) \cap \left( {SBD} \right)\).

Trong \(\left( {SAC} \right)\), gọi \(K = AM \cap SO\) thì \(K \in AM,K \in SO \subset \left( {SBD} \right)\) nên \(K = AM \cap \left( {SBD} \right)\).

Do \(AB//CD\) nên  \(\dfrac{{OC}}{{OA}} = \dfrac{{CD}}{{AB}} = \dfrac{1}{2}\)\( \Rightarrow OA = \dfrac{2}{3}AC,OC = \dfrac{1}{3}AC\).

Gọi \(E\) là trung điểm của \(OC\) suy ra \(ME\) là đường trung bình của \(\Delta SCO\)

\( \Rightarrow ME//SO\).

Mà \(OE = \dfrac{1}{2}OC = \dfrac{1}{2}.\dfrac{1}{3}AC = \dfrac{1}{6}AC\) \( \Rightarrow AE = AO + OE\) \( = \dfrac{2}{3}AC + \dfrac{1}{6}AC = \dfrac{5}{6}AC\)

\( \Rightarrow \) \(\dfrac{{AK}}{{AM}} = \dfrac{{AO}}{{AE}} = \dfrac{4}{5}\).


Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com