Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình \( - \sqrt {2 - m} \sin x + \left( {m + 1} \right)\cos x = m - 1\). Tìm tất cả các giá trị

Câu hỏi số 380140:
Thông hiểu

Cho phương trình \( - \sqrt {2 - m} \sin x + \left( {m + 1} \right)\cos x = m - 1\). Tìm tất cả các giá trị thực của \(m\) để phương trình có nghiệm.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:380140
Phương pháp giải

Áp dụng tính chất:

Phương trình \(a\sin x + b\cos x = c\) có nghiệm khi \({a^2} + {b^2} \ge {c^2}\).

Giải chi tiết

Ta có \( - \sqrt {2 - m} \sin x + \left( {m + 1} \right)\cos x = m - 1\)(*)

TXĐ: \(m \le 2.\)

Áp dụng tính chất trên ta có: phương trình (*) có nghiệm khi

\(2 - m + {\left( {m + 1} \right)^2} \ge {\left( {m - 1} \right)^2} \Leftrightarrow m \ge \dfrac{2}{5}\)

Kết hợp điều kiện ta có\(\dfrac{2}{5} \le m \le 2\).

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com