Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Trong đợt thi đua chào mừng ngày Nhà giáo Việt Nam 20/11, số hoa điểm tốt của ba lớp 7A, 7B và

Câu hỏi số 380586:
Vận dụng

Trong đợt thi đua chào mừng ngày Nhà giáo Việt Nam 20/11, số hoa điểm tốt của ba lớp 7A, 7B và 7C lần lượt tỉ lệ với các số \(12;\,\,10;\,\,9\). Biết rằng tổng số hoa điểm tốt của hai lớp 7B và 7C nhiều hơn lớp 7A là \(140\) bông. Hỏi mỗi lớp đạt được bao nhiêu bông hoa điểm tốt?

Trả lời:

Số điểm tốt của các lớp 7A, 7B, 7C lần lượt là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:380586
Phương pháp giải

Gọi số điểm tốt của ba lớp \(7A,7B,7C\) lần lượt là \(x,y,z\).

Lập mối quan hệ giữa \(x,y,z\) từ điều kiện bài toán và tìm \(x,y,z\) theo tính chất dãy tỉ số bằng nhau.

Giải chi tiết

Gọi số điểm tốt của ba lớp \(7A,7B,7C\) lần lượt là \(x,y,z\) (\(x,y,z \in {\mathbb{N}^*}\))

Vì số điểm tốt của ba lớp tỉ lệ với \(12,10,9\) nên \(\frac{x}{{12}} = \frac{y}{{10}} = \frac{z}{9}\)

Vì tổng số điểm tốt của hai lớp 7B, 7C nhiều hơn lớp 7A là \(140\) nên \(y + z - x = 140\).

Theo bài ra ta có :

\(\frac{x}{{12}} = \frac{y}{{10}} = \frac{z}{9}\) và \(y + z - x = 140\).

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{{12}} = \frac{y}{{10}} = \frac{z}{9} = \frac{{y + z - x}}{{10 + 9 - 12}}\) \( = \frac{{140}}{7} = 20\)

\( \Rightarrow \frac{x}{{12}} = 20 \Rightarrow x = 20.12 = 240\)

\(\frac{y}{{10}} = 20 \Rightarrow y = 20.10 = 200\)

\(\frac{z}{9} = 20 \Rightarrow z = 20.9 = 180\)

Vậy số điểm tốt của các lớp 7A, 7B, 7C lần lượt là \(240,200,180\) điểm tốt.

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com