Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

1) Lập bảng biến thiên và vẽ đồ thị \(\left( P \right)\) của hàm số \(y = {x^2} + 2x-3\) 2) Tìm

Câu hỏi số 380624:
Vận dụng

1) Lập bảng biến thiên và vẽ đồ thị \(\left( P \right)\) của hàm số \(y = {x^2} + 2x-3\)

2) Tìm tọa độ giao điểm của \(\left( P \right)\)và đường thẳng \(d:{\rm{ }}y{\rm{ }} = {\rm{ }}x{\rm{ }}-{\rm{ }}1\)

3) Tìm \(m\) sao cho đường thẳng \(y{\rm{ }} = {\rm{ }}2m\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ âm.

Đáp án đúng là: A

Quảng cáo

Câu hỏi:380624
Phương pháp giải

1) Tìm hoành độ đỉnh, trục đối xứng của Parabol, từ đó suy ra khoảng đồng biến nghịch biến và lập bảng biến thiên.

2) Xét phương trình hoành độ giao điểm tìm nghiệm.

3) Nhận xét điều kiện từ đồ thị đã vẽ.

Giải chi tiết

1) Lập bảng biến thiên và vẽ đồ thị \(\left( P \right)\) của hàm số \(y = {x^2} + 2x-3\)

Ta có: \( - \frac{b}{{2a}} =  - \frac{2}{{2.1}} =  - 1, - \frac{\Delta }{{4a}} =  - 4\)

Vì \(a = 1 > 0\) nên hàm số nghịch biến trên \(\left( { - \infty ; - 1} \right)\) và đồng biến trên \(\left( { - 1; + \infty } \right)\).

Bảng biến thiên:                        

Đồ thị có: Đỉnh \(P\left( { - 1; - 4} \right)\), cắt \(Ox\) tại \(\left( {1;0} \right),\left( { - 3;0} \right)\), cắt \(Oy\) tại \(\left( {0; - 3} \right)\), đi qua điểm \(\left( { - 2; - 3} \right)\).

Trục đối xứng \(x =  - 1\), bề lõm hướng lên trên.

2) Tìm tọa độ giao điểm của \(\left( P \right)\)và đường thẳng \(d:{\rm{ }}y{\rm{ }} = {\rm{ }}x{\rm{ }}--{\rm{ }}1\)

Xét phương trình hoành độ giao điểm của hai đồ thị hàm số:

\({x^2} + 2x - 3 = x - 1\) \( \Leftrightarrow {x^2} + x - 2 = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 1,y = 0\\x =  - 2,y =  - 3\end{array} \right.\)

Vậy giao điểm là \(A\left( {1;0} \right),B\left( { - 2; - 3} \right)\).

3) Tìm \(m\) sao cho đường thẳng \(y{\rm{ }} = {\rm{ }}2m\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ âm.

Đường thẳng \(y = 2m\) đi qua điểm \(\left( {0;2m} \right)\) và song song hoặc trùng với trục hoành.

Từ đồ thị ta thấy YCBT thỏa mãn khi \( - 4 < 2m <  - 3 \Leftrightarrow  - 2 < m <  - \frac{3}{2}\).

Vậy \( - 2 < m <  - \frac{3}{2}\).

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com