Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác nhọn \(ABC\) \(\left( {AB < AC} \right).\) Gọi \(D\) trung điểm của cạnh \(AC.\) Trên tia

Câu hỏi số 380971:
Vận dụng

Cho tam giác nhọn \(ABC\) \(\left( {AB < AC} \right).\) Gọi \(D\) trung điểm của cạnh \(AC.\) Trên tia đối của tia \(DB\) lấy điểm \(E\) sao cho \(DE = DB.\)

a)      Chứng minh \(\Delta ABD = \Delta CED.\) Suy ra \(AB\) song song với \(CE.\)

b)      Kẻ \(AF\) vuông góc với \(BD\) tại \(F\) và \(CG\) vuông góc với \(DE\) tại \(G.\) Chứng minh \(AF\) song song với \(CG\) và \(DF = DG.\)

c)      Kẻ \(BH\) vuông góc với \(AD\) tại \(H\) và \(EI\) vuông góc với \(DC\) tại \(I.\) Đoạn \(BH\) cắt \(AF\) tại \(K.\) Đoạn \(CG\) cắt \(EI\) tại \(M.\) Chứng minh ba điểm \(K,D,M\) thẳng hàng.

Quảng cáo

Câu hỏi:380971
Phương pháp giải

a) Chứng minh hai tam giác bằng nhau theo trường hợp cạnh góc cạnh và sử dụng tính chất hai tam giác bằng nhau.

b) Sử dụng quan hệ từ vuông góc đến song song và trường hợp bằng nhau cạnh huyền – góc nhọn của tam giác vuông

c) Sử dụng tính chất trực tâm tam giác.

Giải chi tiết

Cho tam giác nhọn \(ABC\) \(\left( {AB < AC} \right).\) Gọi \(D\) trung điểm của cạnh \(AC.\) Trên tia đối của tia \(DB\) lấy điểm \(E\) sao cho \(DE = DB.\)

a) Chứng minh \(\Delta ABD = \Delta CED.\) Suy ra \(AB\) song song với \(CE.\)

Xét tam giác \(ABD\) và tam giác \(CDE\) có:

+) \(AD = DC\) (vì \(D\) là trung điểm cạnh \(AC\))

+) \(\widehat {ADB} = \widehat {EDC}\) (hai góc đối đỉnh)

+) \(BD = DE\,\,\left( {gt} \right)\)

Nên \(\Delta ADB = \Delta CDE\left( {c - g - c} \right).\)

Suy ra \(\widehat {BAD} = \widehat {ECD}.\)

Mà \(\widehat {BAD}\) và \(\widehat {ECD}\) ở vị trí so le trong

Nên \(AB\) song song với \(CE.\)

b) Kẻ \(AF\) vuông góc với \(BD\) tại \(F\) và \(CG\) vuông góc với \(DE\) tại \(G.\) Chứng minh \(AF\) song song với \(CG\) và \(DF = DG.\)

Vì \(\left\{ \begin{array}{l}AF \bot BE\,\left( {gt} \right)\\CG \bot BE\left( {gt} \right)\end{array} \right.\) nên \(AF\) song song với \(CG\) (cùng vuông góc với \(BE\))

Suy ra \(\widehat {FAD} = \widehat {GCD}\)  (hai góc ở vị trí so le trong)

Xét tam giác \(AFD\) và tam giác \(CGD\) có:

+) \(\widehat {AFD} = \widehat {CGD} = {90^0}\)

+) \(AD = DC\,\left( {cmt} \right)\)

+) \(\widehat {FAD} = \widehat {GCD}\,\left( {cmt} \right)\)

Nên \(\Delta FAD = \Delta GCD\left( {ch - gn} \right).\) Suy ra \(DF = DG\) (hai cạnh tương ứng)

c) Kẻ \(BH\) vuông góc với \(AD\) tại \(H\) và \(EI\) vuông góc với \(DC\) tại \(I.\) Đoạn \(BH\) cắt \(AF\) tại \(K.\) Đoạn \(CG\) cắt \(EI\) tại \(M.\) Chứng minh ba điểm \(K,D,M\) thẳng hàng.

Xét tam giác \(ABD\) có hai đường cao \(AF\) và \(BH\) giao nhau tại \(K\) nên \(K\) là trực tâm tam giác \(ABD.\)

Suy ra \(DK \bot AB\) mà \(AB//CE\) (theo câu a) nên \(DK \bot EC\)  (1)

Xét tam giác \(EDC\) có hai đường cao \(EI\) và \(CG\) giao nhau tại \(M\) nên \(M\) là trực tâm tam giác \(EDC.\)

Suy ra \(DM \bot EC\)(2)

Từ (1) và (2) suy ra \(K,D,M\) thẳng hàng.

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com