Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho chiếc cốc có dạng hình nón cụt và một viên bi có đường kính bằng chiều cao của cốc.

Câu hỏi số 382633:
Vận dụng cao

Cho chiếc cốc có dạng hình nón cụt và một viên bi có đường kính bằng chiều cao của cốc. Đổ đầy nước vào cốc rồi thả viên bi vào, ta thấy lượng nước tràn ra bằng một phần ba lượng nước đổ vào cốc lúc ban đầu. Biết viên bi tiếp xúc với đáy cốc và thành cốc. Tìm tỉ số bán kính miệng cốc và đáy cốc (bỏ qua độ dày của cốc).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:382633
Giải chi tiết

Gọi \(M,\,\,N\) lần lượt là trung điểm của \(CD,\,\,AB\).

Gọi \(I\) là trung điểm của \(MN\) nên \(I\) là tâm của khối cầu.

Đặt \(MC = r;\,\,NB = R\),\(MN = h\). Kẻ \(CH \bot AB\,\,\left( {H \in AB} \right)\).

Dễ dàng nhận thấy \(MNHC\) là hình chữ nhật nên \(CH = MN = h\), \(NH = MC = r\).

\( \Rightarrow HB = NB - NH = R - r\).

Áp dụng định lí Pytago trong tam giác vuông \(BCH\) có:

\(B{C^2} = C{H^2} + H{B^2} \Leftrightarrow B{C^2} = {h^2} + {\left( {R - r} \right)^2}\,\,\left( 1 \right)\)

Mặt khác, dựng \(IP \bot BC \Rightarrow IP = \frac{h}{2}\). Áp dụng tính chất hai tiếp tuyến cắt nhau ta có:

\(MC = CP = r,\,\,NB = BP = R\)\( \Rightarrow BC = R + r\).

Thay vào (1) ta có:

\(\begin{array}{l}\,\,\,\,\,\,\,{\left( {R + r} \right)^2} = {h^2} + {\left( {R - r} \right)^2}\\ \Leftrightarrow {R^2} + 2Rr + {r^2} = {h^2} + {R^2} - 2Rr + {r^2}\\ \Leftrightarrow 4Rr = {h^2}\end{array}\)

Ta có:

Thể tích khối nón cụt là \({V_1} = \frac{1}{3}\pi h\left( {{R^2} + {r^2} + Rr} \right)\).

Thể tích khối cầu là \({V_2} = \frac{4}{3}\pi {\left( {\frac{h}{2}} \right)^3} = \frac{\pi }{6}{h^3}\).

Theo bài ra ta có \({V_1} = 3{V_2}\).

\( \Rightarrow \frac{1}{3}\pi h\left( {{R^2} + {r^2} + Rr} \right) = \frac{\pi }{2}{h^3}\)\( \Leftrightarrow 2\left( {{R^2} + {r^2} + Rr} \right) = 3{h^2}\).

Thay \({h^2} = 4Rr\) ta có: \(2\left( {{R^2} + {r^2} + Rr} \right) = 12Rr\)\( \Leftrightarrow {R^2} + {r^2} - 5Rr = 0\).

Chia cả 2 vế cho \({r^2}\) ta được: \({\left( {\frac{R}{r}} \right)^2} + 1 - 5\frac{R}{r} = 0 \Leftrightarrow \frac{R}{r} = \frac{{5 + \sqrt {21} }}{2}\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com