Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), tam giác \(SAB\) là tam giác đều và nằm

Câu hỏi số 386656:
Vận dụng

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), tam giác \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Bán kính mặt cầu ngoại tiếp hình chóp \(S.ABCD\) bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:386656
Phương pháp giải

Xác định trục đường tròn ngoại tiếp tam giác \(SAB\) và trục đường tròn ngoại tiếp tứ giác \(ABCD\).

Giao hai trục là tâm mặt cầu ngoại tiếp hình chóp \(S.ABCD\)

Từ đó tính bán kính dựa vào định lý Pytago

Giải chi tiết

Gọi \(H\) là trung điểm đoạn \(AB\) và \(E\) là giao điểm hai đường chéo.

Vì \(\Delta SAB\) đều nên \(SH \bot AB \Rightarrow SH \bot \left( {ABCD} \right)\) (vì \(\left( {SAB} \right) \bot \left( {ABCD} \right)\))

Ta có \(\left\{ \begin{array}{l}EH \bot AB\\EH \bot SH\end{array} \right. \Rightarrow EH \bot \left( {SAB} \right)\)

Gọi I là trọng tâm tam giác \(SAB\), qua \(I\) kẻ \(Ix//HE\)

Qua \(E\) kẻ \(Ey//SH\), và \(Ey\) giao với \(Ix\) tại \(K\).

Khi đó \(KS = KA = KB = KC = KD.\)

Hay \(K\) là tâm mặt cầu ngoại tiếp hình chóp \(S.ABCD\)

Ta có \(\Delta IKS\) vuông tại \(I\) có \(IS = \dfrac{2}{3}SH = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\) ; \(HE = \dfrac{{BC}}{2} = \dfrac{a}{2}.\)

Nên \(KS = \sqrt {S{I^2} + I{K^2}} \) \( = \sqrt {{{\left( {\dfrac{{a\sqrt 3 }}{3}} \right)}^2} + {{\left( {\dfrac{a}{2}} \right)}^2}}  = \dfrac{{a\sqrt {21} }}{6}\)

Chọn A.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com