Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), tam giác \(SAB\) là tam giác đều và nằm
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), tam giác \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Bán kính mặt cầu ngoại tiếp hình chóp \(S.ABCD\) bằng:
Đáp án đúng là: A
Quảng cáo
Xác định trục đường tròn ngoại tiếp tam giác \(SAB\) và trục đường tròn ngoại tiếp tứ giác \(ABCD\).
Giao hai trục là tâm mặt cầu ngoại tiếp hình chóp \(S.ABCD\)
Từ đó tính bán kính dựa vào định lý Pytago
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












