Tìm tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(y = \dfrac{1}{3}{x^3} -
Tìm tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(y = \dfrac{1}{3}{x^3} - {x^2} - 3x + m\) có hai điểm cực trị cách đều đường thẳng \(x + 3y + 1 = 0\).
Đáp án đúng là: A
- Tìm điều kiện để đồ thị hàm số có hai điểm cực trị \(A,B\).
- Trung điểm \(I\) của đoạn \(AB\) thuộc đường thẳng \(x + 3y + 1 = 0\)
Ta có: \(y' = {x^2} - 2x - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1 \Rightarrow y = \dfrac{5}{3} + m\\x = 3 \Rightarrow y = - 9 + m\end{array} \right.\)
Tọa độ hai điểm cực trị là \(A\left( { - 1;\dfrac{5}{3} + m} \right),B\left( {3; - 9 + m} \right)\)
Trung điểm của đoạn\(AB\) là \(I\left( {1; - \dfrac{{11}}{3} + m} \right)\)
Từ yêu cầu đề bài suy ra \(I \in d:x + 3y + 1 = 0\)
\( \Leftrightarrow 1 - 11 + 3m + 1 = 0 \Leftrightarrow m = 3\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com