Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Có bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau chia hết cho 6 và các chữ số không

Câu hỏi số 386694:
Vận dụng

Có bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau chia hết cho 6 và các chữ số không vượt quá 6?

Đáp án đúng là: A

Câu hỏi:386694
Phương pháp giải

Số chia hết cho 6 là số chia hết cho 2 và cho 3.

Giải chi tiết

Đặt \(A = \left\{ {0;1;2;3;4;5;6} \right\}\).

Gọi số tự nhiên có 5 chữ số đôi một khác nhau là \(X = \overline {abcde} \,\,\left( {a \ne 0,\,\,a,b,c,d,e \in A} \right)\).

Vì \(X\,\, \vdots \,\,6\) nên \(X\,\, \vdots \,\,2\) và \(X\,\, \vdots \,\,3\).

TH1: \(d = 0\). Khi đó \(a + b + c + d\,\, \vdots \,\,3\).

\( \Rightarrow \left( {a,b,c,d} \right) \in \left\{ {\left( {3;6;1;2} \right);\left( {3;6;1;5} \right);\left( {3;6;4;2} \right);\left( {3;6;4;5} \right);\left( {1;2;4;5} \right)} \right\}\).

\( \Rightarrow \) Có \(5.4! = 120\) số chia hết cho 6.

TH2: \(e = 2 \Rightarrow a + b + c + d\) chia 3 dư 1.

\( \Rightarrow \left( {a;b;c;d} \right) \in \left\{ {\left( {0;3;6;1} \right);\left( {0;3;6;4} \right);\left( {0;1;4;5} \right);\left( {1;3;4;5} \right);\left( {1;4;5;6} \right)} \right\}\).

\( \Rightarrow \) Có \(3\left( {4! - 3!} \right) + 2.4! = 102\) số.

TH3: \(e = 4 \Rightarrow a + b + c + d\) chia 3 dư 2.

\( \Rightarrow \left( {a;b;c;d} \right) \in \left\{ {\left( {0;3;6;2} \right);\left( {0;3;6;5} \right);\left( {0;1;2;5} \right);\left( {3;1;2;5} \right);\left( {6;1;2;5} \right)} \right\}\).

\( \Rightarrow \) Có \(3\left( {4! - 3!} \right) + 2.4! = 102\) số.

TH4: \(e = 6 \Rightarrow a + b + c + d\) chia 3.

\( \Rightarrow \left( {a,b,c,d} \right) \in \left\{ {\left( {0;3;1;2} \right);\left( {0;3;1;5} \right);\left( {0;3;4;2} \right);\left( {0;3;4;5} \right);\left( {1;2;4;5} \right)} \right\}\).

\( \Rightarrow \) Có \(4\left( {4! - 3!} \right) + 4! = 96\) số.

Vậy có tất cả \(120 + 102 + 102 + 96 = 420\) số.

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com