Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\left( {a;\,\,b} \right)\) và \({x_0} \in \left(

Câu hỏi số 387058:
Thông hiểu

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\left( {a;\,\,b} \right)\) và \({x_0} \in \left( {a;\,\,b} \right).\) Tìm mệnh đề đúng.

Đáp án đúng là: B

Câu hỏi:387058
Phương pháp giải

Ta có: \(x = {x_0}\) là điểm cực trị của hàm số \(y = f\left( x \right) \Rightarrow f'\left( {{x_0}} \right) = 0.\)

Điểm \(x = {x_0}\) là điểm cực đại của hàm số \(y = f\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}f'\left( {{x_0}} \right) = 0\\f''\left( {{x_0}} \right) < 0\end{array} \right..\)

Điểm \(x = {x_0}\) là điểm cực tiểu của hàm số \(y = f\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}f'\left( {{x_0}} \right) = 0\\f''\left( {{x_0}} \right) > 0\end{array} \right..\)

Giải chi tiết

+) Đáp án A: sai vì hàm số có điểm cực trị tại \(x = {x_0}\) nhưng \(f''\left( {{x_0}} \right) = 0\)

Ví dụ hàm số: \(y = {x^4} \Rightarrow y' = 4{x^3} \Rightarrow y'' = 4{x^2}\)

Hàm số có điểm cực tiểu \(x = 0\) và \(y''\left( 0 \right) = 0.\)

+) Đáp án B đúng.

Chọn  B.

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com