Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Tập nghiệm của bất phương trình \({\log _3}\left( {{x^2} - 3x + 2} \right) + {\log _{\dfrac{1}{3}}}\left(

Câu hỏi số 387479:
Thông hiểu

Tập nghiệm của bất phương trình \({\log _3}\left( {{x^2} - 3x + 2} \right) + {\log _{\dfrac{1}{3}}}\left( {5x + 2} \right) > 0\) có dạng\(S = \left( {a;b} \right) \cup \left( {c; + \infty } \right)\) với \(a,\,\,b,\,\,c \in \mathbb{R}\). Khi đó \(a + b + c\) bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:387479
Phương pháp giải

- Tìm ĐKXĐ của bất phương trình.

- Sử dụng các công thức \({\log _{{a^n}}}{b^m} = \dfrac{m}{n}{\log _a}b\)\(\left( {0 < a \ne 1,\,\,b > 0} \right)\).

- Giải phương trình lôgarit cơ bản.

Giải chi tiết

ĐKXĐ: \(\left\{ \begin{array}{l}{x^2} - 3x + 2 > 0\\5x + 2 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x > 2\\x < 1\end{array} \right.\\x >  - \dfrac{2}{5}\end{array} \right.\)\( \Leftrightarrow x \in \left( { - \dfrac{2}{5};1} \right) \cup \left( {2; + \infty } \right)\).

\(\begin{array}{l}\,\,\,\,\,{\log _3}\left( {{x^2} - 3x + 2} \right) + {\log _{\dfrac{1}{3}}}\left( {5x + 2} \right) > 0\\ \Leftrightarrow {\log _3}\left( {{x^2} - 3x + 2} \right) - {\log _3}\left( {5x + 2} \right) > 0\\ \Leftrightarrow {\log _3}\dfrac{{{x^2} - 3x + 2}}{{5x + 2}} > 0\\ \Leftrightarrow \dfrac{{{x^2} - 3x + 2}}{{5x + 2}} > 1\\ \Leftrightarrow {x^2} - 3x + 2 > 5x + 2\,\,\left( {Do\,\,5x + 2 > 0} \right)\\ \Leftrightarrow {x^2} - 8x > 0\\ \Leftrightarrow \left[ \begin{array}{l}x > 8\\x < 0\end{array} \right.\end{array}\)

Kết hợp điều kiện ta có tập nghiệm của bất phương trình là \(S = \left( { - \dfrac{2}{5};0} \right) \cup \left( {8; + \infty } \right)\).

\( \Rightarrow a =  - \dfrac{2}{5};\,\,b = 0;\,\,c = 8\).

Vậy \(a + b + c =  - \dfrac{2}{5} + 0 + 8 = \dfrac{{38}}{5}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com