Tính các tổng sau:
Tính các tổng sau:
Trả lời cho các câu 1, 2 dưới đây:
\(A = \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \dfrac{1}{{{2^4}}} + \ldots + \dfrac{1}{{{2^{2020}}}}\)
Đáp án đúng là: C
Xét các phân số có tử bằng nhau và có mẫu là lũy thừa tăng dần của cùng 1 cơ số thì ta nhân cả 2 vế với đúng cơ số đó. Trường hợp tổng quát:
\(A = \dfrac{1}{{{a^1}}} + \dfrac{1}{{{a^2}}} + \dfrac{1}{{{a^3}}} + \ldots + \dfrac{1}{{{a^n}}}\)\( \Rightarrow A.a = a\left( {\dfrac{1}{{{a^1}}} + \dfrac{1}{{{a^2}}} + \dfrac{1}{{{a^3}}} + \ldots + \dfrac{1}{{{a^n}}}} \right)\)\( = 1 + \dfrac{1}{a} + \ldots + \dfrac{1}{{{a^{n - 1}}}}\)
Đáp án cần chọn là: C
\(B = 1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{{16}} + \dfrac{1}{{32}} + \ldots + \dfrac{1}{{2048}}\)
Đáp án đúng là: C
Xét các phân số có tử bằng nhau và có mẫu là lũy thừa tăng dần của cùng 1 cơ số thì ta nhân cả 2 vế với đúng cơ số đó. Trường hợp tổng quát:
\(A = \dfrac{1}{{{a^1}}} + \dfrac{1}{{{a^2}}} + \dfrac{1}{{{a^3}}} + \ldots + \dfrac{1}{{{a^n}}}\)\( \Rightarrow A.a = a\left( {\dfrac{1}{{{a^1}}} + \dfrac{1}{{{a^2}}} + \dfrac{1}{{{a^3}}} + \ldots + \dfrac{1}{{{a^n}}}} \right)\)\( = 1 + \dfrac{1}{a} + \ldots + \dfrac{1}{{{a^{n - 1}}}}\)
Đáp án cần chọn là: C
Quảng cáo
>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










