Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Nếu \(C_n^3 + 3A_n^2 = 390\) thì \(n\) bằng:

Câu hỏi số 388015:
Thông hiểu

Nếu \(C_n^3 + 3A_n^2 = 390\) thì \(n\) bằng:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:388015
Giải chi tiết

\(C_n^3 + 3A_n^2 = 390\)\(\left( {n \ge 3;\,\,n \in \mathbb{N}} \right)\)

\( \Leftrightarrow \dfrac{{n!}}{{3!(n - 3)!}} + 3\dfrac{{n!}}{{\left( {n - 2} \right)!}} = 390\)

\( \Leftrightarrow \dfrac{1}{{3!}}n\left( {n - 1} \right)\left( {n - 2} \right) + 3n\left( {n - 1} \right) = 390\)

\( \Leftrightarrow \dfrac{1}{6}\left( {{n^2} - n} \right)\left( {n - 2} \right) + 3{n^2} - 3n - 390 = 0\)

\( \Leftrightarrow \dfrac{1}{6}{n^3} - \dfrac{1}{2}{n^2} + \dfrac{1}{3}n + 3{n^2} - 3n - 390 = 0\)

\( \Leftrightarrow \dfrac{1}{6}{n^3} + \dfrac{5}{2}{n^2} - \dfrac{8}{3}n - 390 = 0\)

\( \Leftrightarrow n = 10\)

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com