Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Đặt điện áp \(u = U\sqrt 2 .\cos \omega t\,\,\left( V \right)\)(với U và ω không đổi) vào hai đầu

Câu hỏi số 388972:
Vận dụng cao

Đặt điện áp \(u = U\sqrt 2 .\cos \omega t\,\,\left( V \right)\)(với U và ω không đổi) vào hai đầu đoạn mạch AB như hình vẽ. R là biến trở, cuộn cảm thuần có độ tự cảm L, tụ điện có điện dung C. Biết  \(LC{\omega ^2} = 2\). Gọi P là công suất tiêu thụ của đoạn mạch AB. Đồ thị trong hệ tọa độ vuông góc ROP biểu diễn sự phụ thuộc của P vào R trong trường hợp K mở ứng với đường (1) và trong trưởng hợp K đóng ứng với đường (2) như hình vẽ. Giá trị của điện trở r bằng :

 

Đáp án đúng là: C

Quảng cáo

Câu hỏi:388972
Phương pháp giải

Công thức tính cảm kháng, dung kháng: \(\left\{ \begin{array}{l}{Z_L} = \omega L\\{Z_C} = \dfrac{1}{{\omega C}}\end{array} \right.\)

Công suất tiêu thụ của mạch khi K đóng: \({P_d} = \dfrac{{{U^2}R}}{{{R^2} + Z_C^2}}\)

Công suất tiêu thụ của đoạn mạch khi K mở: \({P_m} = \dfrac{{{U^2}.\left( {R + r} \right)}}{{{{\left( {R + r} \right)}^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}}\)

Kết hợp các công thức và kĩ năng đọc đồ thị để khai thác được các dữ kiện từ đồ thị.

Giải chi tiết

Ta có đồ thị như hình vẽ:

 

Từ dữ kiện: \(LC{\omega ^2} = 2 \Rightarrow \dfrac{{{Z_L}}}{{{Z_C}}} = 2 \Rightarrow {Z_L} = 2{Z_C}\)

+ Khi K đóng mạch gồm R nt C. Công suất tiêu thụ của đoạn mạch khi đó:

\({P_d} = \dfrac{{{U^2}R}}{{{R^2} + Z_C^2}} = \dfrac{{{U^2}}}{{R + \dfrac{{Z_C^2}}{R}}} \Rightarrow {P_{d\max }} = \dfrac{{{U^2}}}{{2R}} \Leftrightarrow R = {Z_C}\)

Từ đồ thị ta thấy: \({P_{d\max }} = \dfrac{{{U^2}}}{{2{R_0}}} = \dfrac{{{U^2}}}{{2{Z_C}}} = 5a\,\,\left( 1 \right)\)

Chú ý khi Pđ đạt cực đại thì \({R_0} = {Z_C} > 20\Omega \)

Tại giá trị R = 20Ω ta có : \({P_d} = \dfrac{{{U^2}.20}}{{{{20}^2} + Z_C^2}} = 3a\,\,\left( 2 \right)\)

Lấy (1) chia (2) ta có:

\(\begin{array}{l}\dfrac{{{{20}^2} + Z_C^2}}{{40.{Z_C}}} = \dfrac{5}{3} \Leftrightarrow 3Z_C^2 - 200{Z_C} + 1200 = 0\\ \Leftrightarrow \left[ \begin{array}{l}{Z_C} = 60\Omega \,\,\left( {t/m} \right)\\{Z_C} = \dfrac{{20}}{3} < 20\,\,\left( {loai} \right)\end{array} \right. \Rightarrow {Z_C} = 60\Omega \end{array}\)

+ Khi K mở mạch gồm: \(R - L,r - C\)

Công suất tiêu thụ của mạch:

\({P_m} = \dfrac{{{U^2}.\left( {R + r} \right)}}{{{{\left( {R + r} \right)}^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}} = \dfrac{{{U^2}.\left( {R + r} \right)}}{{{{\left( {R + r} \right)}^2} + Z_C^2}}\)

Từ đồ thị ta thấy:\(R = 0 \Rightarrow {P_m} = \dfrac{{{U^2}.r}}{{{r^2} + Z_C^2}} = 3a\,\,\,\left( 3 \right)\)

Từ (2) và (3) ta có:

\(\begin{array}{l}\dfrac{{{U^2}.20}}{{{{20}^2} + Z_C^2}} = \dfrac{{{U^2}.r}}{{{r^2} + Z_C^2}} \Leftrightarrow \dfrac{{20}}{{20 + {{60}^2}}} = \dfrac{r}{{{r^2} + {{60}^2}}}\\ \Leftrightarrow {r^2} - 200r + 3600 = 0 \Rightarrow r = 180\Omega \end{array}\)

(Chú ý rằng \(r > \left| {{Z_L} - {Z_C}} \right|\))

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com