Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = m{x^3} + {x^2} + \left( {{m^2} - 6}

Câu hỏi số 389231:
Thông hiểu

Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = m{x^3} + {x^2} + \left( {{m^2} - 6} \right)x + 1\) đạt cực tiểu tại \(x = 1.\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:389231
Phương pháp giải

Điểm \(x = {x_0}\) là điểm cực tiểu của hàm số \(y = f\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}f'\left( {{x_0}} \right) = 0\\f''\left( {{x_0}} \right) > 0\end{array} \right..\)

Giải chi tiết

Ta có: \(y = m{x^3} + {x^2} + \left( {{m^2} - 6} \right)x + 1\)

\(\begin{array}{l} \Rightarrow y' = 3m{x^2} + 2x + {m^2} - 6\\ \Rightarrow y'' = 6mx + 2\end{array}\)

Hàm số \(y = m{x^3} + {x^2} + \left( {{m^2} - 6} \right)x + 1\) đạt cực tiểu tại \(x = 1\)  

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}y'\left( 1 \right) = 0\\y''\left( 1 \right) > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3m + 2 + {m^2} - 6 = 0\\6m + 2 > 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 3m - 4 = 0\\m >  - \frac{1}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 1\\m =  - 4\end{array} \right.\\m >  - \frac{1}{3}\end{array} \right. \Leftrightarrow m = 1.\end{array}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com