Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình \(m{\sin ^2}x + 2\sin x\cos x + 3m{\cos ^2}x = 1\). Có bao nhiêu giá trị nguyên thuộc

Câu hỏi số 389672:
Thông hiểu

Cho phương trình \(m{\sin ^2}x + 2\sin x\cos x + 3m{\cos ^2}x = 1\). Có bao nhiêu giá trị nguyên thuộc khoảng \(\left( {0;2019} \right)\) của tham số \(m\) để phương trình vô nghiệm.

Đáp án đúng là: A

Quảng cáo

Câu hỏi:389672
Phương pháp giải

- TH1: \(\cos x = 0\).

- TH2: \(\cos x \ne 0\): Giải phương trình bậc hai đối với \(\sin x,\,\,\cos x\) bằng cách chia cả hai vế cho \({\cos ^2}x\), đưa phương trình về phương trình bậc hai đối với \(\tan x\).

- Điều kiện để phương trình bậc hai vô nghiệm là \(\Delta  < 0\) hoặc \(\Delta ' < 0\).

Giải chi tiết

Xét phương trình \(m{\sin ^2}x + 2\sin x\cos x + 3m{\cos ^2}x = 1\)  (*)

TH1: \(\cos x = 0\), phương trình trở thành: \(m = 1\) (luôn đúng).

Khi đó phương trình luôn có nghiệm \(x = \dfrac{\pi }{2} + k\pi \,\,\left( {\,k \in \mathbb{Z}} \right)\) khi \(m = 1\).Loại \(m = 1.\)

TH2: \(\cos x \ne 0\). Phương trình không có nghiệm \(x = \dfrac{\pi }{2} + k\pi \,\,\left( {\,k \in \mathbb{Z}} \right)\)

Chia cả hai vế của phương trình (*) cho \({\cos ^2}x\) ta được:

\(\begin{array}{l}\,\,\,\,\,\,\,m{\tan ^2}x + 2\tan \,x + 3m = 1 + {\tan ^2}x\\ \Leftrightarrow \left( {m - 1} \right){\tan ^2}x + 2\tan \,x + 3m - 1 = 0\,\,\left( {**} \right)\end{array}\)

Phương trình (**) vô nghiệm \( \Leftrightarrow \left\{ \begin{array}{l}m - 1 \ne 0\\\Delta ' = 1 - \left( {m - 1} \right)\left( {3m - 1} \right) < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \ne 1\\ - 3{m^2} + 4m < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \ne 1\\\left[ \begin{array}{l}m > \dfrac{4}{3}\\m < 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m > \dfrac{4}{3}\\m < 0\end{array} \right.\) 

Kết hợp 2 trường hợp ta có: \(m \in \left( { - \infty ;0} \right) \cup \left( {\dfrac{4}{3}; + \infty } \right)\).

Mà \(m \in \mathbb{Z},\,\,m \in \left( {0;2019} \right)\)\( \Rightarrow m \in \left\{ {2;3;4;...;2018} \right\}\).

Vậy có 2017 giá trị của \(m\) thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com