Cho phương trình \(m{\sin ^2}x + 2\sin x\cos x + 3m{\cos ^2}x = 1\). Có bao nhiêu giá trị nguyên thuộc
Cho phương trình \(m{\sin ^2}x + 2\sin x\cos x + 3m{\cos ^2}x = 1\). Có bao nhiêu giá trị nguyên thuộc khoảng \(\left( {0;2019} \right)\) của tham số \(m\) để phương trình vô nghiệm.
Đáp án đúng là: A
Quảng cáo
- TH1: \(\cos x = 0\).
- TH2: \(\cos x \ne 0\): Giải phương trình bậc hai đối với \(\sin x,\,\,\cos x\) bằng cách chia cả hai vế cho \({\cos ^2}x\), đưa phương trình về phương trình bậc hai đối với \(\tan x\).
- Điều kiện để phương trình bậc hai vô nghiệm là \(\Delta < 0\) hoặc \(\Delta ' < 0\).
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












