Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Một con lắc lò xo có độ cứng \(k = 250N/m\) được đặt nằm ngang. Một đầu gắn cố định,

Câu hỏi số 390646:
Vận dụng

Một con lắc lò xo có độ cứng \(k = 250N/m\) được đặt nằm ngang. Một đầu gắn cố định, một đầu gắn một vật có khối lượng \(M = 100g\), có thể chuyển động không ma sát trên mặt phẳng nằm ngang. Kéo vật lệch khỏi vị trí cân bằng một đoạn \(\Delta l = 5cm\) rồi thả nhẹ. Xác định tốc độ lớn nhất của vật.

Đáp án đúng là: A

Quảng cáo

Câu hỏi:390646
Phương pháp giải

Cơ năng của vật chịu tác dụng của lực đàn hồi: \({\rm{W}} = \dfrac{1}{2}m{v^2} + \dfrac{1}{2}k.\Delta {l^2}\)

+ Nếu vật chỉ chịu tác dụng của trọng lực và lực đàn hồi thì cơ năng của vật được bảo toàn.

Giải chi tiết

Tại vị trí vật lệch khỏi vị trí cân bằng một đoạn Δl = 5cm rồi thả nhẹ, ta có:

\(\left\{ \begin{array}{l}{v_1} = 0\\\Delta {l_1} = 5cm = 0,05m\end{array} \right. \Rightarrow {{\rm{W}}_1} = \dfrac{1}{2}k.\Delta l_1^2\)

Khi qua vị trí cân bằng, ta có:

\(\left\{ \begin{array}{l}{v_2} = {v_{\max }}\\\Delta {l_2} = 0\end{array} \right. \Rightarrow {{\rm{W}}_2} = \dfrac{1}{2}M.v_{\max }^2\)

Áp dụng định luật bảo toàn cơ năng ta có:

 \(\begin{array}{l}{{\rm{W}}_1} = {{\rm{W}}_2} \Leftrightarrow \dfrac{1}{2}k.\Delta l_1^2 = \dfrac{1}{2}M.v_{\max }^2 \Rightarrow {v_{\max }} = \sqrt {\dfrac{{k.\Delta l_1^2}}{M}} \\ \Rightarrow {v_{\max }} = \sqrt {\dfrac{{250.0,{{05}^2}}}{{0,1}}}  = 2,5m/s\end{array}\)

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com