Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Gọi \({x_1},\,\,{x_2}\) là hai nghiệm của phương trình \({x^2} - mx + m - 1 = 0\) (m là tham số). Tìm m

Câu hỏi số 390967:
Vận dụng cao

Gọi \({x_1},\,\,{x_2}\) là hai nghiệm của phương trình \({x^2} - mx + m - 1 = 0\) (m là tham số). Tìm m để biểu thức \(P = \frac{{2{x_1}{x_2} + 3}}{{x_1^2 + x_2^2 + 2\left( {{x_1}{x_2} + 1} \right)}}\) đạt giá trị lớn nhất.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:390967
Phương pháp giải

+) Tìm điều kiện để phương trình có 2 nghiệm.

+) Khi phương trình bậc hai \(a{x^2} + bx + c = 0\) có 2 nghiệm \({x_1},\,\,{x_2}\).

Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{ - b}}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right.\).

+) Xét \(P - 1\) và đánh giá.

Giải chi tiết

Xét phương trình \({x^2} - mx + m - 1 = 0\) ta có \(\Delta  = {m^2} - 4\left( {m - 1} \right) = {\left( {m - 2} \right)^2} \ge 0\,\,\forall m\) do đó phương trình đã cho luôn có nghiệm với mọi giá trị của m.

Giả sử phương trình \({x^2} - mx + m - 1 = 0\) có hai nghiệm là \({x_1},\,\,{x_2}\).

Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}{x_2} = m - 1\end{array} \right.\).

\( \Rightarrow x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {m^2} - 2\left( {m - 1} \right) = {m^2} - 2m + 2\)

Khi đó \(P = \frac{{2{x_1}{x_2} + 3}}{{x_1^2 + x_2^2 + 2\left( {{x_1}{x_2} + 1} \right)}} = \frac{{2m - 2 + 3}}{{{m^2} - 2m + 2 + 2\left( {m - 1 + 1} \right)}} = \frac{{2m + 1}}{{{m^2} + 2}}\)

Xét \(P - 1 = \frac{{2m + 1}}{{{m^2} + 2}} - 1 = \frac{{2m + 1 - {m^2} - 2}}{{{m^2} + 2}} = \frac{{ - {m^2} + 2m - 1}}{{{m^2} + 2}} =  - \frac{{{{\left( {m - 1} \right)}^2}}}{{{m^2} + 2}} \le 0\,\,\forall m \in \mathbb{R}\)

\( \Rightarrow P \le 1\,\,\forall m \in \mathbb{R}\). Dấu "=" xảy ra \( \Leftrightarrow m - 1 = 0 \Leftrightarrow m = 1\).

Đáp án cần chọn là: B

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com