Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = \dfrac{{1 - x}}{{{x^2} - 2mx + 4}}\). Số giá trị thực của \(m\) để đồ thị hàm

Câu hỏi số 391004:
Vận dụng

Cho hàm số \(y = \dfrac{{1 - x}}{{{x^2} - 2mx + 4}}\). Số giá trị thực của \(m\) để đồ thị hàm số có đúng hai đường tiệm cận ?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:391004
Phương pháp giải

- Sử dụng Định nghĩa tiệm cận ngang của đồ thị hàm số \(y = f(x)\): Nếu \(\mathop {\lim }\limits_{x \to  + \infty } f(x) = a\,\)hoặc\(\,\mathop {\lim }\limits_{x \to  - \infty } f(x) = a\)\( \Rightarrow y = a\) là TCN của đồ thị hàm số, xác định đường TCN của hàm số.

- Để hàm số có đúng hai đường tiệm cận thì hàm số phải có bao nhiêu đường tiệm cận đứng.

- Tìm điều kiện số nghiệm của phương trình mẫu số  = 0.

Giải chi tiết

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \dfrac{{1 - x}}{{{x^2} - 2mx + 4}} = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{1 - x}}{{{x^2} - 2mx + 4}} = 0.\)

\( \Rightarrow \) Đồ thị hàm số \(y = \dfrac{{1 - x}}{{{x^2} - 2mx + 4}}\) luôn có 1 TCN \(y = 0\) với mọi \(m\).

Để đồ thị hàm số \(y = \dfrac{{1 - x}}{{{x^2} - 2mx + 4}}\) có đúng 2 đường tiệm cận thì số đường tiệm cận đứng là 1.

\( \Leftrightarrow \) Phương trình \({x^2} - 2mx + 4 = 0\,\,\left( * \right)\) hoặc là có hai nghiệm phân biệt, trong đó có một nghiệm là 1; hoặc là có nghiệm kép (bằng 1 hay khác 1 đều nhận).

TH1 : \(x = 1\) là nghiệm của phương trình (*) trên \( \Rightarrow 1 - 2m + 4 = 0 \Leftrightarrow m = \dfrac{5}{2}\).

Khi đó \(y = \dfrac{{1 - x}}{{{x^2} - 2mx + 4}} = \dfrac{{1 - x}}{{{x^2} - 5x + 4}} = \dfrac{{ - 1}}{{x - 4}}\)

\( \Rightarrow \) Đồ thị hàm số có đúng 1 TCĐ là \(x = 4 \Rightarrow m = \dfrac{5}{2}\) thỏa mãn.

TH2 : Phương trình \({x^2} - 2mx + 4 = 0\) có nghiệm kép \( \Leftrightarrow \Delta  = {m^2} - 4 = 0 \Leftrightarrow m =  \pm 2.\)

Thử lại:

Với \(m =  - 2\) thì \(y = \dfrac{{1 - x}}{{{x^2} - 2mx + 4}} = \dfrac{{1 - x}}{{{x^2} + 4x + 4}}\) có 1 TCĐ là  \(x =  - 2\).

Với \(m =  - 2\) thì \(y = \dfrac{{1 - x}}{{{x^2} - 2mx + 4}} = \dfrac{{1 - x}}{{{x^2} - 4x + 4}}\) có 1 TCĐ là  \(x = 2\).

\( \Rightarrow m =  \pm 2\)thỏa mãn.

Vậy tập các giá trị của \(m\) thỏa mãn là \(\left\{ {\dfrac{5}{2};2; - 2} \right\}.\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com