Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Với giá trị của tham số \(m\) thì phương trình \(\left( {m + 1} \right){16^x} - 2\left( {2m - 3}

Câu hỏi số 391079:
Vận dụng

Với giá trị của tham số \(m\) thì phương trình \(\left( {m + 1} \right){16^x} - 2\left( {2m - 3} \right){4^x} + 6m + 5 = 0\) có hai nghiệm trái dấu?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:391079
Giải chi tiết

\(\left( {m + 1} \right){16^x} - 2\left( {2m - 3} \right){4^x} + 6m + 5 = 0\,\,\,\,\,(*)\)

+ Đặt \({4^x} = t\,\,\,\left( {t > 0} \right)\) , phương trình trở thành:

\(\left( {m + 1} \right){t^2} - 2\left( {2m - 3} \right)t + 6m + 5 = 0\,\,\,\,\left( 1 \right)\).

+ Để phương trình (*) có 2 nghiệm thì phương trình (1) phải có 2 nghiệm dương phân biệt

\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}\Delta ' > 0\\{t_1}{t_2} > 0\\{t_1} + {t_2} > 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{\left( {2m - 3} \right)^2} - \left( {m + 1} \right)\left( {6m + 5} \right) > 0\\\dfrac{{6m + 5}}{{m + 1}} > 0\\\dfrac{{2\left( {2m - 3} \right)}}{{m + 1}} > 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 11,67 < m < 0,17\\m <  - 1;\,\,\,m >  - \dfrac{5}{6}\\m <  - 1;\,\,\,m > \dfrac{3}{2}\end{array} \right. \Rightarrow  - 11,67 < m <  - 1\end{array}\)

+ Để (*) có 2 nghiệm trái dấu:

\(\left\{ \begin{array}{l}{x_1} > 0\\{x_2} < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{4^{{x_1}}} > {4^0}\\{4^{{x_2}}} < {4^0}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{t_1} > 1\\{t_2} < 1\end{array} \right. \Leftrightarrow \left( {{t_1} - 1} \right)\left( {{t_2} - 1} \right) < 0\)

\(\begin{array}{l} \Leftrightarrow {t_1}{t_2} - \left( {{t_1} + {t_2}} \right) + 1 < 0\\ \Leftrightarrow \dfrac{{6m + 5}}{{m + 1}} - \dfrac{{2\left( {2m - 3} \right)}}{{m + 1}} + \dfrac{{m + 1}}{{m + 1}} < 0\\ \Leftrightarrow \dfrac{{6m + 5 - 4m + 6 + m + 1}}{{m + 1}} < 0\\ \Leftrightarrow \dfrac{{3m + 12}}{{m + 1}} < 0 \Leftrightarrow  - 4 < m <  - 1\end{array}\)

Vậy kết hợp lại ta có: \( - 4 < m <  - 1\).

Chọn A.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com