Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Nếu \(a > 0,b > 0\) thỏa mãn \({\log _4}a = {\log _6}b = {\log _9}\left( {a + b} \right)\) thì

Câu hỏi số 391818:
Vận dụng

Nếu \(a > 0,b > 0\) thỏa mãn \({\log _4}a = {\log _6}b = {\log _9}\left( {a + b} \right)\) thì \(\dfrac{a}{b}\) bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:391818
Phương pháp giải

Đặt \({\log _4}a = {\log _6}b = {\log _9}(a + b) = t\) sau đó biểu diễn \(a,b\) theo \(t\)

Từ đó tính được \(\dfrac{a}{b}\) .

Giải chi tiết

Ta có: \({\log _4}a = {\log _6}b = {\log _9}(a + b) = t\) suy ra \(\left\{ \begin{array}{l}a = {4^t}\\b = {6^t}\\a + b = {9^t}\end{array} \right.\)

\( \Rightarrow {4^t} + {6^t} = {9^t}\)\( \Leftrightarrow {\left( {\dfrac{2}{3}} \right)^{2t}} + {\left( {\dfrac{2}{3}} \right)^t} - 1 = 0\) 

Đặt \({\left( {\dfrac{2}{3}} \right)^t} = u > 0 \Rightarrow {u^2} + u - 1 = 0\)\( \Rightarrow \left[ \begin{array}{l}u = \dfrac{{ - 1 + \sqrt 5 }}{2}\left( {tm} \right)\\u = \dfrac{{ - 1 - \sqrt 5 }}{2}\left( {ktm} \right)\end{array} \right.\)

Nên \({\left( {\dfrac{2}{3}} \right)^t} = \dfrac{{ - 1 + \sqrt 5 }}{2}\)

Mà \(\dfrac{a}{b} = \dfrac{{{4^t}}}{{{6^t}}} = {\left( {\dfrac{2}{3}} \right)^t}\)  nên \(\dfrac{a}{b} = \dfrac{{ - 1 + \sqrt 5 }}{2}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com