Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải hệ bất phương trình: \(2 \le \frac{{2x + 1}}{{x - 3}} \le 5\)

Câu hỏi số 393052:
Vận dụng

Giải hệ bất phương trình: \(2 \le \frac{{2x + 1}}{{x - 3}} \le 5\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:393052
Phương pháp giải

\(2 \le \frac{{2x + 1}}{{x - 3}} \le 5 \Leftrightarrow \left\{ \begin{array}{l}\frac{{2x + 1}}{{x - 3}} \ge 2\,\,\,\,(1)\\\frac{{2x + 1}}{{x - 3}} \le 5\,\,\,\,(2)\end{array} \right.\)

Giải từng bất phương trình sau đó lấy giao các tập hợp nghiệm.

Giải chi tiết

\(2 \le \frac{{2x + 1}}{{x - 3}} \le 5 \Leftrightarrow \left\{ \begin{array}{l}\frac{{2x + 1}}{{x - 3}} \ge 2\,\,\,\,(1)\\\frac{{2x + 1}}{{x - 3}} \le 5\,\,\,\,(2)\end{array} \right.\)

Tập xác định:  \(D = R\backslash \left\{ 3 \right\}.\)

Giải (1) ta có:

\(\frac{{2x + 1}}{{x - 3}} \ge 2 \Leftrightarrow \frac{{2x + 1}}{{x - 3}} - 2 \ge 0 \\ \Leftrightarrow \frac{{2x + 1 - 2x + 6}}{{x - 3}} \ge 0 \Leftrightarrow \frac{7}{{x - 3}} \ge 0 \Leftrightarrow x > 3\)

Vậy tập nghiệm của (1) là \(\left( {3; + \infty } \right)\)

Giải (2) ta có tập nghiệm là: \(\left( { - \infty ;3} \right) \cup \left[ {\frac{{16}}{3}; + \infty } \right)\)

Vậy tập nghiệm của hệ là: \(\left[ {\frac{{16}}{3}; + \infty } \right)\)

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com