Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tiếp tuyến tại \(M\left( {4;1} \right)\) với đường tròn \(\left( C \right):{\left( {x - 3} \right)^2} +

Câu hỏi số 393557:
Thông hiểu

Tiếp tuyến tại \(M\left( {4;1} \right)\) với đường tròn \(\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} = 5\) có phương trình là

Đáp án đúng là: C

Quảng cáo

Câu hỏi:393557
Phương pháp giải

Tìm tâm \(I\)  và bán kính \(R\) của đường tròn \(\left( C \right)\). Nhận thấy \(M \in \left( C \right).\)

Tiếp tuyến của đường tròn \(\left( C \right)\) tại \(M\) nhận \(\overrightarrow {IM} \) làm VTPT.

Giải chi tiết

\(\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} = 5\) có tâm \(I\left( {3; - 1} \right)\) và bán kính \(R = \sqrt 5 .\)

\(MI = \sqrt {{{\left( {3 - 4} \right)}^2} + {{\left( { - 1 - 1} \right)}^2}}  = \sqrt 5 \) nên \(M \in \left( C \right).\)

\( \Rightarrow \overrightarrow {MI}  = \left( { - 1; - 2} \right)\) là một vectơ pháp tuyến của tiếp tuyến tại \(M\) với đường tròn \(\left( C \right)\).

Vậy tiếp tuyến tại \(M\) của đường tròn \(\left( C \right)\) có phương trình là:

\( - \left( {x - 4} \right) - 2\left( {y - 1} \right) = 0 \Leftrightarrow x + 2y - 6 = 0.\)

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com