Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải bất phương trình sau: \(\sqrt {{x^2} + 4x}  + 2\sqrt {x - 2}  \ge \sqrt {2{x^2} + 12x - 8} .\)

Câu hỏi số 394595:
Vận dụng cao

Giải bất phương trình sau: \(\sqrt {{x^2} + 4x}  + 2\sqrt {x - 2}  \ge \sqrt {2{x^2} + 12x - 8} .\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:394595
Phương pháp giải

Giải bất phương trình bằng phương pháp đặt ẩn phụ.

Giải chi tiết

\(\sqrt {{x^2} + 4x}  + 2\sqrt {x - 2}  \ge \sqrt {2{x^2} + 12x - 8} \,\,\left( * \right)\)    

Điều kiện: \(x \ge 2.\)

Đặt \(\left\{ \begin{array}{l}\sqrt {{x^2} + 4x}  = a\\2\sqrt {x - 2}  = b\,\,\end{array} \right..\)

Với \(x \ge 2\) thì \(a > 0,\,\,b \ge 0.\)

Ta có: \(2{x^2} + 12x - 8 = 2\left( {{x^2} + 4x} \right) + 4\left( {x - 2} \right) = 2{a^2} + {b^2}.\)

\(\begin{array}{l} \Rightarrow \left( * \right) \Leftrightarrow a + b \ge \sqrt {2{a^2} + {b^2}} \\ \Leftrightarrow {a^2} + 2ab + {b^2} \ge 2{a^2} + {b^2}\\ \Leftrightarrow 2ab \ge {a^2}\\ \Leftrightarrow 2b \ge a\,\,\,\,\,\left( {do\,\,\,a > 0} \right)\\ \Leftrightarrow 4\sqrt {x - 2}  \ge \sqrt {{x^2} + 4x} \\ \Leftrightarrow 16\left( {x - 2} \right) \ge {x^2} + 4x\\ \Leftrightarrow {x^2} - 12x + 32 \le 0\\ \Leftrightarrow \left( {x - 4} \right)\left( {x - 8} \right) \le 0\\ \Leftrightarrow 4 \le x \le 8.\end{array}\)

Kết hợp với điều kiện ta có \(4 \le x \le 8\) là tập nghiệm của bất phương trình.

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com