Cho đường tròn \(\left( C \right):\,\,{x^2} + {y^2} - 2x + 4y - 4 = 0\) và đường thẳng \(d:\,\,\,3x - 4y +
Cho đường tròn \(\left( C \right):\,\,{x^2} + {y^2} - 2x + 4y - 4 = 0\) và đường thẳng \(d:\,\,\,3x - 4y + 4 = 0.\)
Trả lời cho các câu 1, 2 dưới đây:
Xác định tâm và bán kính đường tròn \(\left( C \right).\) Viết phương trình đường thẳng \(\Delta \) song song với đường thẳng \(d\) và tiếp xúc với \(\left( C \right).\)
Đáp án đúng là: B
Đường tròn \(\left( C \right):\,\,\,{x^2} + {y^2} - 2ax - 2by + c = 0\) có tâm \(I\left( {a;\,\,b} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} .\)
Đường thẳng \(\Delta //d \Rightarrow \overrightarrow {{n_d}} \) chính là VTPT của \(\Delta .\)
Phương trình đường thẳng \(d\) đi qua \(M\left( {{x_0};\,\,{y_0}} \right)\) và có VTPT \(\overrightarrow n = \left( {A;\,\,B} \right)\) có dạng: \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) = 0.\)
Đáp án cần chọn là: B
Viết phương trình đường thẳng đi qua điểm \(A\left( {0; - 1} \right)\) cắt \(\left( C \right)\) tại hai điểm \(M,\,\,N\) sao cho độ dài dây cung \(MN\) là ngắn nhất.
Đáp án đúng là: C
Giả sử đường thẳng \(d\) cắt đường tròn \(\left( C \right)\) có tâm \(I\) và bán kính \(R\) theo dây cung \(AB.\)
Khi đó áp dụng định lý Pitago ta có: \({R^2} = {d^2}\left( {I;\,\,d} \right) + {\left( {\frac{{AB}}{2}} \right)^2}.\)
Đáp án cần chọn là: C
Quảng cáo
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












