Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho đường tròn \(\left( C \right):\,\,{x^2} + {y^2} - 2x + 4y - 4 = 0\) và đường thẳng \(d:\,\,\,3x - 4y +

Cho đường tròn \(\left( C \right):\,\,{x^2} + {y^2} - 2x + 4y - 4 = 0\) và đường thẳng \(d:\,\,\,3x - 4y + 4 = 0.\)

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng

Xác định tâm và bán kính đường tròn \(\left( C \right).\) Viết phương trình đường thẳng \(\Delta \) song song với đường thẳng \(d\) và tiếp xúc với \(\left( C \right).\)

Đáp án đúng là: B

Câu hỏi:397552
Phương pháp giải

Đường tròn \(\left( C \right):\,\,\,{x^2} + {y^2} - 2ax - 2by + c = 0\) có tâm \(I\left( {a;\,\,b} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} .\)

Đường thẳng \(\Delta //d \Rightarrow \overrightarrow {{n_d}} \) chính là VTPT của \(\Delta .\)

Phương trình đường thẳng \(d\) đi qua \(M\left( {{x_0};\,\,{y_0}} \right)\) và có VTPT \(\overrightarrow n  = \left( {A;\,\,B} \right)\) có dạng: \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) = 0.\)

Giải chi tiết

Xét phương trình đường tròn \(\left( C \right):\,\,{x^2} + {y^2} - 2x + 4y - 4 = 0\) ta có: \(a = 1,\,\,b =  - 2,\,\,x =  - 4\)

\( \Rightarrow \left( C \right)\) có tâm \(I\left( {1; - 2} \right)\) và bán kính \(R = \sqrt {{1^2} + {{\left( { - 2} \right)}^2} + 4}  = 3.\)

Ta có:\(d:\,\,\,3x - 4y + 4 = 0\)  có VTPT \(\overrightarrow {{n_d}}  = \left( {3;\,\, - 4} \right).\)

\( \Rightarrow \) Đường thẳng \(\Delta //d\) có phương trình : \(3x - 4y + c = 0\,\,\,\,\left( {c \ne 4} \right).\)

\(\Delta \) tiếp xúc với \(\left( C \right) \Rightarrow d\left( {I;\,\,\Delta } \right) = R = 3\)

\(\begin{array}{l} \Leftrightarrow \frac{{\left| {3.1 - 4.\left( { - 2} \right) + c} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 3 \Leftrightarrow \left| {11 + c} \right| = 15\\ \Leftrightarrow \left[ \begin{array}{l}11 + c = 15\\11 + c =  - 15\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}c = 4\,\,\,\,\left( {ktm} \right)\\c =  - 26\,\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

Vậy \(\Delta :\,\,\,3x - 4y - 26 = 0.\)

Đáp án cần chọn là: B

Câu hỏi số 2:
Vận dụng

Viết phương trình đường thẳng đi qua điểm \(A\left( {0; - 1} \right)\) cắt \(\left( C \right)\) tại hai điểm \(M,\,\,N\) sao cho độ dài dây cung \(MN\) là ngắn nhất.

Đáp án đúng là: C

Câu hỏi:397553
Phương pháp giải

Giả sử đường thẳng \(d\) cắt đường tròn \(\left( C \right)\) có tâm \(I\) và bán kính \(R\)  theo dây cung \(AB.\)

Khi đó áp dụng định lý Pitago ta có: \({R^2} = {d^2}\left( {I;\,\,d} \right) + {\left( {\frac{{AB}}{2}} \right)^2}.\)

Giải chi tiết

Ta có: \(\overrightarrow {AI}  = \left( {1; - 1} \right) \Rightarrow AI = \sqrt 2  < R\)

\( \Rightarrow A\) nằm trong đường tròn \(\left( C \right).\)

Gọi \(H\) là trung điểm của \(MN \Rightarrow IH \bot MN\) hay \(d\left( {I;\,\,MN} \right) = IH\) và \(MN = 2MH.\)

\( \Rightarrow MN\) ngắn nhất \( \Leftrightarrow MH\) ngắn nhất.

Lại có: \(MH = \sqrt {{R^2} - I{H^2}} \)

\( \Rightarrow MH\) ngắn nhất \( \Leftrightarrow IH\) lớn nhất \( \Leftrightarrow d\left( {I;\,\,MN} \right) = IA.\)

\( \Rightarrow d'\) đi qua điểm \(A\left( {0; - 1} \right)\) và có VTPT là: \(\overrightarrow {AI}  = \left( {1; - 1} \right)\)

\( \Rightarrow d':\,\,\,x - y + 1 = 0.\)

Đáp án cần chọn là: C

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com