Viết phương trình tiếp tuyến của đường tròn \(\left( C \right):\,\,\,{x^2} + {y^2} = 25,\) biết
Viết phương trình tiếp tuyến của đường tròn \(\left( C \right):\,\,\,{x^2} + {y^2} = 25,\) biết rằng tiếp tuyến đó hợp với đường thẳng \(\Delta :\,\,x + 2y - 1 = 0\) một góc \(\alpha \) mà \(\cos \alpha = \frac{2}{{\sqrt 5 }}.\)
Đáp án đúng là: D
Quảng cáo
Đường tròn \(\left( C \right)\) có tâm \(I\left( {0;\,\,0} \right)\) và bán kính \(R = 5.\)
Giả sử tiếp tuyến \(d:\,\,\,ax + by + c = 0\,\,\,\left( {{a^2} + {b^2} \ne 0} \right).\)
\(d\) là tiếp tuyến của \(\left( C \right) \Rightarrow d\left( {I;\,\,d} \right) = R = 5.\)
Theo đề bài ta có: \(d\) tạo với \(\Delta \) một góc \(\alpha \Rightarrow \cos \alpha = \frac{{\left| {\overrightarrow {{n_\Delta }} .\overrightarrow {{n_d}} } \right|}}{{\left| {\overrightarrow {{n_\Delta }} } \right|.\left| {\overrightarrow {{n_d}} } \right|}}.\)
Giải phương trình để từ đó lập phương trình đường thẳng \(d.\)
Đáp án cần chọn là: D
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












