Trong không gian \(Oxyz\), cho điểm \(A\left( {1; - 2;3} \right)\) và đường thẳng \(d\) có phương trình:
Trong không gian \(Oxyz\), cho điểm \(A\left( {1; - 2;3} \right)\) và đường thẳng \(d\) có phương trình: \(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 2 + t\\z = - 3 - t\end{array} \right.\left( {t \in \mathbb{R}} \right)\). Mặt cầu \(\left( S \right)\) có tâm \(A\) và tiếp xúc với đường thẳng \(d\) có bán kính là:
Đáp án đúng là: A
- Vì \(\left( S \right)\) tiếp xúc với đường thẳng \(d\) nên bán kính mặt cầu \(\left( S \right)\) là: \(R = d\left( {A;d} \right)\).
- Sử dụng công thức tính khoảng cách từ điểm đến đường thẳng: \(d\left( {A;d} \right) = \frac{{\left| {\left[ {\overrightarrow {AM} ;\overrightarrow {{u_d}} } \right]} \right|}}{{\left| {\overrightarrow {{u_d}} } \right|}}\) trong đó \(\overrightarrow {{u_d}} \) là 1 VTCP của \(d\), \(M\) là điểm bất kì thuộc \(d\).
Đường thẳng \(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 2 + t\\z = - 3 - t\end{array} \right.\left( {t \in \mathbb{R}} \right)\) có 1 VTCP \(\overrightarrow {{u_d}} = \left( {2;1; - 1} \right)\) và đi qua \(M\left( { - 1;2; - 3} \right)\).
Ta có: \(\overrightarrow {AM} = \left( { - 2;4; - 6} \right)\).
\(\begin{array}{l} \Rightarrow \left[ {\overrightarrow {AM} ;\overrightarrow {{u_d}} } \right] = \left( {2; - 14; - 10} \right)\\ \Rightarrow d\left( {A;d} \right) = \frac{{\left| {\left[ {\overrightarrow {AM} ;\overrightarrow {{u_d}} } \right]} \right|}}{{\left| {\overrightarrow {{u_d}} } \right|}} = \frac{{\sqrt {{2^2} + {{\left( { - 14} \right)}^2} + {{\left( { - 10} \right)}^2}} }}{{\sqrt {{2^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} = 5\sqrt 2 \end{array}\)
Vậy bán kính mặt cầu \(\left( S \right)\) là \(R = 5\sqrt 2 \).
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com