Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Xác suất bắn trúng đích của một người bắn súng là 0,6. Xác suất để trong ba lần bắn độc

Câu hỏi số 400221:
Vận dụng

Xác suất bắn trúng đích của một người bắn súng là 0,6. Xác suất để trong ba lần bắn độc lập người đó bắn trúng đích đúng một lần.

Đáp án đúng là: D

Câu hỏi:400221
Phương pháp giải

Sử dụng các công thức tính xác suất.

Nếu A và B là hai biến cố độc lập thì \(P\left( {AB} \right) = P\left( A \right).P\left( B \right)\) . Nếu A và B là hai biến cố xung khắc thì \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\) . Nếu A và B là hai biến cố đối nhau thì \(P\left( A \right) + P\left( B \right) = 1\)
Giải chi tiết

Gọi A là biến cố “người bắn súng bắn trúng đích”. Ta có \(P\left( A \right) = 0,6\)

Suy ra \(\bar A\)  là  biến cố “người bắn súng không bắn trúng đích”. Ta có \(P\left( {\bar A} \right) = 1 - P\left( A \right) = 1 - 0,6 = 0,4.\)

Xét phép thử “bắn ba lần độc lập” với biến cố “người đó bắn trúng đích đúng một lần”, ta có các biến cố xung khắc sau:

\(B\): “Bắn trúng đích lần đầu và trượt ở hai lần bắn sau”. Ta có \(P\left( B \right) = 0,6.0,4.0,4 = 0,096.\) C: “Bắn trúng đích ở lần bắn thứ hai và trượt ở lần đầu và lần thứ ba”. Ta có

\(P\left( C \right) = 0,4.0,6.0,4 = 0,096.\)

D: “Bắn trúng đích ở lần bắn thứ ba và trượt ở hai lần đầu”. Ta có:

\(P\left( D \right) = 0,4.0,4.0,6 = 0,096.\)

Xác suất để người đó bắn trúng đích đúng một lần là:

\(P = P\left( A \right) + P\left( B \right) + P\left( C \right) = 0,096 + 0,096 + 0,096 = 0,288.\)

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com