Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

\(y = \tan \left( {\dfrac{x}{{x + 1}}} \right),\,\,{x_0} = 0\)

Câu hỏi số 402207:
Thông hiểu

\(y = \tan \left( {\dfrac{x}{{x + 1}}} \right),\,\,{x_0} = 0\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:402207
Phương pháp giải

Sử dụng công thức \(\left( {\tan u} \right)' = \dfrac{{u'}}{{{{\cos }^2}u}}\).

Giải chi tiết

\(y = \tan \left( {\dfrac{x}{{x + 1}}} \right),\,\,{x_0} = 0\)

\(\begin{array}{l}y' = \dfrac{{\left( {\dfrac{x}{{x + 1}}} \right)'}}{{{{\cos }^2}\left( {\dfrac{x}{{x + 1}}} \right)}} = \dfrac{{1.\left( {x + 1} \right) - x.1}}{{{{\left( {x + 1} \right)}^2}{{\cos }^2}\left( {\dfrac{x}{{x + 1}}} \right)}}\\y' = \dfrac{1}{{{{\left( {x + 1} \right)}^2}{{\cos }^2}\left( {\dfrac{x}{{x + 1}}} \right)}}\\ \Rightarrow y'\left( 0 \right) = \dfrac{1}{{{1^2}.{{\cos }^2}0}} = 1.\end{array}\).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com