Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ Oxyz, bán kính của mặt cầu đi qua bốn điểm \(O\left( {0;0;0}

Câu hỏi số 402682:
Thông hiểu

Trong không gian với hệ tọa độ Oxyz, bán kính của mặt cầu đi qua bốn điểm \(O\left( {0;0;0} \right);\)

\(A\left( {4;0;0} \right);\)\(B\left( {0;4;0} \right);\)\(C\left( {0;0;4} \right)\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:402682
Phương pháp giải

- Gọi \(I\left( {a;b;c} \right)\) là tâm mặt cầu \( \Rightarrow IO = IA = IB = IC\).

- Giải hệ phương trình \(\left\{ \begin{array}{l}IO = IA\\IO = IB\\IO = IC\end{array} \right.\) tìm \(a,\,\,b,\,\,c\). Sử dụng công thức tính độ dài đoạn thẳng \(AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \).

- Tính bán kính mặt cầu \(R = IO\).

Giải chi tiết

Gọi \(I\left( {a;b;c} \right)\) là tâm mặt cầu cân tìm, khi đó ta có \(IO = IA = IB = IC\).

\(\begin{array}{l}\left\{ \begin{array}{l}IO = IA\\IO = IB\\IO = IC\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{a^2} + {b^2} + {c^2} = {\left( {a - 4} \right)^2} + {b^2} + {c^2}\\{a^2} + {b^2} + {c^2} = {a^2} + {\left( {b - 4} \right)^2} + {c^2}\\{a^2} + {b^2} + {c^2} = {a^2} + {b^2} + {\left( {c - 4} \right)^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}0 =  - 8a + 16\\0 =  - 8b + 16\\0 =  - 8c + 16\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 2\\c = 2\end{array} \right.\end{array}\)

Vậy bán kính mặt cầu cần tìm là: \(R = IO = \sqrt {{2^2} + {2^2} + {2^2}}  = 2\sqrt 3 .\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com