Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right)\) liên tục, có đạo hàm trên \(\mathbb{R}\), \(f\left( 2 \right) = 16\) và

Câu hỏi số 403013:
Vận dụng

Cho hàm số \(f\left( x \right)\) liên tục, có đạo hàm trên \(\mathbb{R}\), \(f\left( 2 \right) = 16\) và \(\int\limits_0^8 {f\left( x \right)dx = 4} \). Tích phân \(\int\limits_0^4 {xf'\left( {\dfrac{x}{2}} \right)dx} \) bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:403013
Phương pháp giải

Sử dụng phương pháp tích phân từng phần: \(\int\limits_a^b {udv}  = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

Giải chi tiết

Gọi \(I = \int\limits_0^4 {xf'\left( {\dfrac{x}{2}} \right)dx} \)

Đặt \(\left\{ \begin{array}{l}u = x\\dv = f'\left( {\dfrac{x}{2}} \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = 2f\left( {\dfrac{x}{2}} \right)\end{array} \right.\)

\(\begin{array}{l} \Rightarrow I = \left. {2xf\left( {\dfrac{x}{2}} \right)} \right|_0^4 - 2\int\limits_0^4 {f\left( {\dfrac{x}{2}} \right)dx} \\ \Leftrightarrow I = 8f\left( 2 \right) - 4\int\limits_0^4 {f\left( {\dfrac{x}{2}} \right)d\left( {\dfrac{x}{2}} \right)} \\ \Leftrightarrow I = 8.16 - 4\int\limits_0^8 {f\left( x \right)dx} \\ \Leftrightarrow I = 128 - 4.4 = 112.\end{array}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com