Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Chọn ngẫu nghiên một số từ tập các số tự nhiên có ba chữ số đôi một khác nhau. Xác suất

Câu hỏi số 403587:
Vận dụng

Chọn ngẫu nghiên một số từ tập các số tự nhiên có ba chữ số đôi một khác nhau. Xác suất để số được chọn có tích các chữ số là số dương và chia hết cho 6.

Đáp án đúng là: A

Quảng cáo

Câu hỏi:403587
Giải chi tiết

Gọi số tự nhiên có ba chữ số đôi một khác nhau là \(\overline {abc} \,\,\left( {0 \le a,\,\,b,\,\,c \le 9,\,\,a,\,\,b,\,\,c \in \mathbb{N},\,\,a \ne 0} \right)\).

Số cách chọn \(a\) là 9 cách \(\left( {a \ne 0} \right)\).

Số cách chọn \(b\) là 9 cách \(\left( {b \ne a} \right)\).

Số cách chọn \(c\) là 8 cách \(\left( {c \ne a,\,\,b} \right)\).

\( \Rightarrow n\left( \Omega  \right) = 9.9.8 = 648\).

Gọi A là biến cố: “số được chọn có tích các chữ số là số dương và chia hết cho 6.”

Ta có \(abc > 0,\,\,abc\,\, \vdots \,\,6 \Rightarrow \left\{ \begin{array}{l}abc\,\, \vdots \,\,2\\abc\,\, \vdots \,\,3\end{array} \right.\).

+ Vì \(abc\,\, \vdots \,\,2\) thì ít nhất một trong các số \(a,\,\,b,\,\,c\) thuộc \(\left\{ {2;4;6;8} \right\}\).

+ Vì \(abc\,\, \vdots \,\,3\) thì ít nhất một trong các số \(a,\,\,b,\,\,c\) thuộc \(\left\{ {3;6;9} \right\}\).

Khi đó ta có các trường hợp sau:

+ TH1: \(\overline {abc} \) có mặt chữ số 6, suy ra có \(3.A_8^2 = 168\) (số).

+ TH2: \(\overline {abc} \) có mặt chữ số 3 hoặc 9, không có mặt chữ số 6 và có ít nhất một trong các số \(a,\,\,b,\,\,c\) thuộc \(\left\{ {2;4;8} \right\}\), có \(2.\left( {C_3^1.C_3^1.3! + C_3^2.3!} \right) + C_3^1.3! = 162\) (số).

\( \Rightarrow n\left( A \right) = 168 + 162 = 330\) (số).

Vậy \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \dfrac{{330}}{{6498}} = \dfrac{{55}}{{108}}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com