Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(a\), \(SA\)vuông gócvới mặt phẳng đáy, góc
Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(a\), \(SA\)vuông gócvới mặt phẳng đáy, góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt đáy là \({60^0}\) (minh họa như hình bên). Gọi \(M,\,\,N\) lần lượt là trung điểm của \(AB,\,\,AC\). Khoảng cách giữa hai đường thẳng \(SB\) và \(MN\) bằng:

Đáp án đúng là: A
Quảng cáo
- Khoảng cách giữa hai đường thẳng chéo nhau là khoảng cách giữa đường này và mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.
- Sử dụng phương pháp đổi đỉnh, đổi về khoảng cách từ \(A\) đến \(\left( {SBC} \right)\).
- Xác định khoảng cách và sử dụng hệ thức lượng trong tam giác vuông để tính khoảng cách.
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













