Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(a\), \(SA\)vuông gócvới mặt phẳng đáy, góc

Câu hỏi số 403588:
Vận dụng

Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(a\), \(SA\)vuông gócvới mặt phẳng đáy, góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt đáy là \({60^0}\) (minh họa như hình bên). Gọi \(M,\,\,N\) lần lượt là trung điểm của \(AB,\,\,AC\). Khoảng cách giữa hai đường thẳng \(SB\) và \(MN\) bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:403588
Phương pháp giải

- Khoảng cách giữa hai đường thẳng chéo nhau là khoảng cách giữa đường này và mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.

- Sử dụng phương pháp đổi đỉnh, đổi về khoảng cách từ \(A\) đến \(\left( {SBC} \right)\).

- Xác định khoảng cách và sử dụng hệ thức lượng trong tam giác vuông để tính khoảng cách.

Giải chi tiết

Vì \(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN\parallel BC \Rightarrow MN\parallel \left( {SBC} \right)\).

\( \Rightarrow d\left( {MN;SB} \right) = d\left( {MN;\left( {SBC} \right)} \right) = d\left( {M;\left( {SBC} \right)} \right)\).

Ta có:

\(\begin{array}{l}AM \cap \left( {SBC} \right) = B \Rightarrow \dfrac{{d\left( {M;\left( {SBC} \right)} \right)}}{{d\left( {A;\left( {SBC} \right)} \right)}} = \dfrac{{MB}}{{AB}} = \dfrac{1}{2}\\ \Rightarrow d\left( {M;\left( {SBC} \right)} \right) = \dfrac{1}{2}d\left( {A;\left( {SBC} \right)} \right)\end{array}\)

Gọi \(K\) là trung điểm của \(BC\). Vì \(\Delta ABC\) đều nên \(BC \bot AK\).

Ta có: \(\left\{ \begin{array}{l}BC \bot AK\\BC \bot SA\,\,\left( {SA \bot \left( {ABC} \right)} \right)\end{array} \right.\)\( \Rightarrow BC \bot \left( {SAK} \right)\).

Trong \(\left( {SAK} \right)\) kẻ \(AH \bot SK\,\,\left( {H \in SK} \right)\), ta có: \(\left\{ \begin{array}{l}AH \bot SK\\AH \bot BC\end{array} \right.\)\( \Rightarrow AH \bot \left( {SBC} \right)\).

\( \Rightarrow d\left( {A;\left( {SBC} \right)} \right) = AH\).

Tam giác \(ABC\) đều cạnh \(a\) nên \(AK = \dfrac{{a\sqrt 3 }}{2}\).

Ta có: \(BC \bot \left( {SAK} \right) \Rightarrow BC \bot SK\).

Khi đó ta có \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\\left( {SBC} \right) \supset SK \bot BC\\\left( {ABC} \right) \supset AK \bot BC\end{array} \right.\)\( \Rightarrow \angle \left( {\left( {SBC} \right);\left( {ABC} \right)} \right) = \angle \left( {SK;AK} \right) = \angle SKA = {60^0}\).

Xét tam giác vuông \(SAK\) có: \(SA = AK.tan{60^0} = \dfrac{{a\sqrt 3 }}{2}.\sqrt 3  = \dfrac{{3a}}{2}\).

Áp dụng hệ thức lượng trong tam giác vuông \(SAK\) ta có:

\(AH = \dfrac{{SA.AK}}{{\sqrt {S{A^2} + A{K^2}} }} = \dfrac{{\dfrac{{3a}}{2}.\dfrac{{a\sqrt 3 }}{2}}}{{\sqrt {\dfrac{{9{a^2}}}{4} + \dfrac{{3{a^2}}}{4}} }} = \dfrac{{3a}}{4}\).

Vậy \(d\left( {MN;SB} \right) = \dfrac{1}{2}AH = \dfrac{{3a}}{8}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com