Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(y = f(x)\) xác định, liên tục và có đạo hàm trên đoạn \(\left[ {a;b} \right]\). Xét

Câu hỏi số 403618:
Thông hiểu

Cho hàm số \(y = f(x)\) xác định, liên tục và có đạo hàm trên đoạn \(\left[ {a;b} \right]\). Xét các khẳng định sau:

1. Hàm số \(f\left( x \right)\) đồng biến trên \((a;b)\) thì \(f'(x) > 0,\forall x \in \left( {a;b} \right)\)

2. Giả sử \(f\left( a \right) > f\left( c \right) > f\left( b \right),\forall c \in \left( {a,b} \right)\) suy ra hàm số nghịch biến trên \(\left( {a;b} \right)\)

3. Giả sử phương trình \(f'(x) = 0\) có nghiệm là \(x = m\) khi đó nếu hàm số \(f(x)\) đồng biến trên \(\left( {m,b} \right)\) thì hàm số \(f\left( x \right)\) nghịch biến trên \(\left( {a,m} \right).\)

4. Nếu \(f'(x) \ge 0,\forall x \in \left( {a,b} \right)\), thì hàm số đồng biến trên \(\left( {a,b} \right)\)

Số khẳng định đúng trong các khẳng định trên là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:403618
Phương pháp giải

Xét tính đúng sai của các đáp án dựa vào các kiến thức hàm số đồng biến, nghịch biến trên khoảng xác định.

Giải chi tiết

*2 sai vì với \({c_1} < {c_2}\) bất kỳ nằm trong \(\left( {a,b} \right)\) ta chưa thể so sánh được \(f\left( {{c_1}} \right)\) và \(f\left( {{c_2}} \right)\).

*3 sai. Vì \(y'\) bằng 0 tại điểm đó thì chưa chắc đã đổi dấu qua điểm đó. VD hàm số \(y = {x^3}.\)

*4 sai: Vì thiếu điều kiện \(f'\left( x \right) = 0\) tại hữu hạn điểm.VD hàm số y = 1999 có \(y' = 0 \ge 0\) nhưng là hàm hằng.

Chú ý khi giải

HS thường nhầm lẫn:

- Khẳng định số 4 vì không chú ý đến điều kiện bằng 0 tại hữu hạn điểm.

- Khẳng định số 3 vì không chú ý đến điều kiện \(y'\) đổi dấu qua nghiệm.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com