Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Tìm số các số nguyên m thỏa mãn  \(\mathop {\lim }\limits_{x \to  + \infty } \left( {3\sqrt {m{x^2} + 2x +

Câu hỏi số 404140:
Vận dụng

Tìm số các số nguyên m thỏa mãn  \(\mathop {\lim }\limits_{x \to  + \infty } \left( {3\sqrt {m{x^2} + 2x + 1}  - mx} \right) =  + \infty .\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:404140
Phương pháp giải

- Đặt nhân tử chung x ra ngoài.

- Xét dấu.

Giải chi tiết

Ta có:

\(\begin{array}{l}\,\,\,\,\,\mathop {\lim }\limits_{x \to  + \infty } \left( {3\sqrt {m{x^2} + 2x + 1}  - mx} \right)\\ = \mathop {\lim }\limits_{x \to  + \infty } x\left( {3\sqrt {m + \dfrac{2}{x} + \dfrac{1}{{{x^2}}}}  - m} \right)\end{array}\)

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } x =  + \infty \), do đó để  \(\mathop {\lim }\limits_{x \to  + \infty } \left( {3\sqrt {m{x^2} + 2x + 1}  - mx} \right) =  + \infty \) thì \(\mathop {\lim }\limits_{x \to  + \infty } \left( {3\sqrt {m + \dfrac{2}{x} + \dfrac{1}{{{x^2}}}}  - m} \right) > 0\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}3\sqrt m  - m > 0\\m \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge 0\\3\sqrt m  > m\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m \ge 0\\9m > {m^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge 0\\0 < m < 9\end{array} \right. \Leftrightarrow 0 < m < 9\end{array}\)

Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ {1;2;3;4;5;6;7;8} \right\}\).

Với \(m = 0\) ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \left( {3\sqrt {2x + 1} } \right) =  + \infty \,\,\left( {tm} \right)\), với \(m = 9\) ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \left( {3\sqrt {9{x^2} + 2x + 1}  - 9x} \right) = 1\,\,\left( {ktm} \right)\).

Vậy có 9 giá trị của m thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com