Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right)\) có phương trình \(2x - 6y - 4z + 7 = 0\) và ba

Câu hỏi số 404316:
Vận dụng

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right)\) có phương trình \(2x - 6y - 4z + 7 = 0\) và ba điểm \(A\left( {2;4; - 1} \right);\)\(B\left( {1;4; - 1} \right);\) \(C\left( {2;4;3} \right)\). Gọi S là điểm nằm trên mặt phẳng \(\left( P \right)\) sao cho \(SA = SB = SC\). Tính \(l = SA + SB\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:404316
Phương pháp giải

- Gọi \(S\left( {a;b;c} \right)\).

- Lập 3 phương trình ba ẩn, giải hệ phương trình tìm a, b, c.

- Tính \(SA\), sau đó tính l.

Giải chi tiết

Gọi \(S\left( {a;b;c} \right).\)

Vì \(S \in \left( P \right) \Rightarrow 2a - 6b - 4c + 7 = 0\,\,\,\left( 1 \right)\)

Theo bài ra ta có:

\(\begin{array}{l}SA = SB = SC\\ \Rightarrow \left\{ \begin{array}{l}SA = SB\\SA = SC\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}{\left( {a - 2} \right)^2} + {\left( {b - 4} \right)^2} + {\left( {c + 1} \right)^2} = {\left( {a - 1} \right)^2} + {\left( {b - 4} \right)^2} + {\left( {c + 1} \right)^2}\\{\left( {a - 2} \right)^2} + {\left( {b - 4} \right)^2} + {\left( {c + 1} \right)^2} = {\left( {a - 2} \right)^2} + {\left( {b - 4} \right)^2} + {\left( {c - 3} \right)^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 4a - 8b + 2c + 21 =  - 2a - 8b + 2c + 18\\ - 4b - 8b + 2c + 21 =  - 4a - 8b - 6c + 29\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 2a =  - 3\\8c = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{3}{2}\\c = 1\end{array} \right.\end{array}\)

Thay vào (1) ta có: \(2.\dfrac{3}{2} - 6b - 4.1 + 7 = 0 \Leftrightarrow b = 1.\)

Khi đó ta có: \(S\left( {\dfrac{3}{2};1;1} \right) \Rightarrow SA = \sqrt {\dfrac{1}{4} + 9 + 4}  = \dfrac{{\sqrt {53} }}{2}\).

Vậy \(l = SA + SB = 2SA = \sqrt {53} .\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com