Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có \(AB = \sqrt 2 a\), \(AC = a\), \(BC = \sqrt 3 a\), \(\angle SBA = \angle SCA = {90^0}\).

Câu hỏi số 404580:
Vận dụng cao

Cho hình chóp \(S.ABC\) có \(AB = \sqrt 2 a\), \(AC = a\), \(BC = \sqrt 3 a\), \(\angle SBA = \angle SCA = {90^0}\). Và hai mặt phẳng (SAB) và (SAC) tạo với nhau một góc \(\alpha \) sao cho \(\cos \alpha  = \dfrac{1}{{\sqrt 3 }}\). Thể tích khối chóp \(S.ABC\) bằng:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:404580
Giải chi tiết

Từ giả thiết: \(AB = \sqrt 2 a,\,\,AC = a,\,\,BC = \sqrt 3 a\) \( \Rightarrow B{C^2} = 3{a^2} = 2{a^2} + {a^2} = A{B^2} + A{C^2}\) \( \Rightarrow \Delta ABC\) vuông tại A.

Dựng \(SD \bot \left( {ABC} \right) \Rightarrow ABDC\) là hình chữ nhật.

Ta có: \(DB = AC = a,\,\,DC = AB = \sqrt 2 a\).

Đặt \(SD = h\). Áp dụng công thức tính nhanh ta có: \(\dfrac{{DB}}{{SB}}.\dfrac{{DC}}{{SC}} = \cos \alpha \).

Coi \(a = 1\), ta có:

\(\begin{array}{l}\dfrac{1}{{\sqrt {{h^2} + 1} }}.\dfrac{{\sqrt 2 }}{{\sqrt {{h^2} + 2} }} = \dfrac{1}{{\sqrt 3 }} \Leftrightarrow {h^4} + 3{h^2} - 4 = 0\\ \Leftrightarrow {h^2} = 1 \Leftrightarrow h = 1 \Rightarrow h = a = SD\end{array}\)

Vậy \({V_{S.ABC}} = \dfrac{1}{3}SD.{S_{ABC}} = \dfrac{1}{3}SD.\dfrac{1}{2}AB.AC = \dfrac{{\sqrt 2 {a^3}}}{6}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com