Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt[3]{{ax + 1}} - \sqrt {1 - bx}

Câu hỏi số 404767:
Vận dụng

Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt[3]{{ax + 1}} - \sqrt {1 - bx} }}{x}\,\,\,khi\,\,x \ne 0\\3a - 5b - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\). Tìm điều kiện của tham số ab để hàm số liên tục tại điểm \(x = 0\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:404767
Phương pháp giải

- Để hàm số \(y = f\left( x \right)\) liên tục tại điểm \(x = {x_0}\) thì \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

- Để tính \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\), ta thêm bớt và tách thành 2 giới hạn dạng 0/0, sau đó sử dụng phương pháp nhân liên hợp.

Giải chi tiết

TXĐ: \(D = \mathbb{R},\,\,x = 0 \in D\).

Ta có:

\(\begin{array}{l}\,\,\,\,\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt[3]{{ax + 1}} - \sqrt {1 - bx} }}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt[3]{{ax + 1}} - 1}}{x} + \mathop {\lim }\limits_{x \to 0} \dfrac{{1 - \sqrt {1 - bx} }}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sqrt[3]{{ax + 1}} - 1} \right)\left( {{{\sqrt[3]{{ax + 1}}}^2} + \sqrt[3]{{ax + 1}} + 1} \right)}}{{x\left( {{{\sqrt[3]{{ax + 1}}}^2} + \sqrt[3]{{ax + 1}} + 1} \right)}} + \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {1 - \sqrt {1 - bx} } \right)\left( {1 + \sqrt {1 - bx} } \right)}}{{x\left( {1 + \sqrt {1 - bx} } \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{ax + 1 - 1}}{{x\left( {{{\sqrt[3]{{ax + 1}}}^2} + \sqrt[3]{{ax + 1}} + 1} \right)}} + \mathop {\lim }\limits_{x \to 0} \dfrac{{1 - 1 + bx}}{{x\left( {1 + \sqrt {1 - bx} } \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{a}{{{{\sqrt[3]{{ax + 1}}}^2} + \sqrt[3]{{ax + 1}} + 1}} + \mathop {\lim }\limits_{x \to 0} \dfrac{b}{{1 + \sqrt {1 - bx} }}\\ = \dfrac{a}{{1 + 1 + 1}} + \dfrac{b}{{1 + 1}} = \dfrac{a}{3} + \dfrac{b}{2}\end{array}\)

\(f\left( 0 \right) = 3a - 5b - 1\).

Để hàm số liên tục tại \(x = 0\) thì \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right)\)

\( \Leftrightarrow \dfrac{a}{3} + \dfrac{b}{2} = 3a - 5b - 1\) \( \Leftrightarrow \dfrac{8}{3}a - \dfrac{{11}}{2}b = 1 \Leftrightarrow 16a - 33b = 6\).

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com