Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(A,\,AB = 2a,\,AC = 4a,SA\) vuông góc với mặt

Câu hỏi số 405194:
Vận dụng

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(A,\,AB = 2a,\,AC = 4a,SA\) vuông góc với mặt phẳng đáy và \(SA = a\) (minh họa như hình bên). Gọi \(M\) là trung điểm của \(AB\). Khoảng cách giữa hai đường thẳng \(SM\) và \(BC\) bằng

 

Đáp án đúng là: A

Quảng cáo

Câu hỏi:405194
Phương pháp giải

- Khoảng cách giữa hai đường thẳng chéo nhau là khoảng cách từ đường thẳng này đến mặt phẳng chứa đường thẳng kia và song song với mặt phẳng này.

- Sử dụng phương pháp đổi đỉnh.

- Xác định khoảng cách và sử dụng hệ thức lượng trong tam giác vuông để tính khoảng cách.

Giải chi tiết

 

Gọi N là trung điểm của AB, ta có MN là đường trung bình của tam giác ABC \( \Rightarrow MN\parallel BC\).

Mà \(MN \subset \left( {SMN} \right)\) \( \Rightarrow BC\parallel \left( {SMN} \right)\).

Ta có: \(\left\{ \begin{array}{l}SM \subset \left( {SMN} \right)\\BC\parallel \left( {SMN} \right)\end{array} \right.\) \( \Rightarrow d\left( {SM;BC} \right) = d\left( {BC;\left( {SMN} \right)} \right) = d\left( {C;\left( {SMN} \right)} \right)\).

Ta có: \(AC \cap \left( {SMN} \right) = \left\{ M \right\} \Rightarrow \frac{{d\left( {C;\left( {SMN} \right)} \right)}}{{d\left( {A;\left( {SMN} \right)} \right)}} = \frac{{CM}}{{AM}} = 1\).

\( \Rightarrow d\left( {C;\left( {SMN} \right)} \right) = d\left( {A;\left( {SMN} \right)} \right)\).

Trong (ABC) kẻ \(AH \bot MN\,\,\left( {H \in MN} \right)\), trong (SAH) kẻ \(AK \bot SH\,\,\left( {K \in SH} \right)\).

Ta có: \(\left\{ \begin{array}{l}MN \bot SA\,\,\left( {SA \bot \left( {ABC} \right)} \right)\\MN \bot AH\end{array} \right. \Rightarrow MN \bot \left( {SAH} \right)\)

Mà\(AK \subset \left( {SAH} \right) \Rightarrow MN \bot AK\).

Ta có: \(\left\{ \begin{array}{l}AK \bot SH\\AK \bot MN\end{array} \right. \Rightarrow AK \bot \left( {SMN} \right) \Rightarrow d\left( {A;\left( {SMN} \right)} \right) = AK\).

Áp dụng hệ thức lượng trong tam giác vuông AMN có:

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{M^2}}} + \frac{1}{{A{N^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {2a} \right)}^2}}} = \frac{5}{{4{a^2}}}\)

Áp dụng hệ thức lượng trong tam giác vuông SAH có:

\(\begin{array}{l}\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{H^2}}} = \frac{1}{{{a^2}}} + \frac{5}{{4{a^2}}} = \frac{9}{{4{a^2}}}\\ \Rightarrow AK = \frac{{2a}}{3}\end{array}\)

Vậy \(d\left( {SM;BC} \right) = \frac{{2a}}{3}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com