Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một con lắc lò xo được đặt nằm ngang gồm lò xo có độ cứng \(k = 40\,\,N/m\) và vật nặng

Câu hỏi số 406210:
Vận dụng cao

Một con lắc lò xo được đặt nằm ngang gồm lò xo có độ cứng \(k = 40\,\,N/m\) và vật nặng khối lượng \(m = 400\,\,g\). Từ vị trí cân bằng kéo vật ra một đoạn \(8\,\,cm\) rồi thả nhẹ cho vật dao động điều hòa. Sau khi thả vật \(\dfrac{{7\pi }}{{30}}\,\,s\) thì giữ đột ngột điểm chính giữa của lò xo khi đó. Biên độ dao động của vật sau khi giữ lò xo là

Đáp án đúng là: C

Quảng cáo

Câu hỏi:406210
Phương pháp giải

Tần số góc của con lắc: \(\omega  = \sqrt {\dfrac{k}{m}} \)

Sử dụng vòng tròn lượng giác và công thức: \(\Delta \varphi  = \omega .\Delta t\)

Giữ lò xo: \(k'x' = kx\)

Công thức độc lập với thời gian: \({x^2} + \dfrac{{{v^2}}}{{{\omega ^2}}} = {A^2}\)

Giải chi tiết

Tần số góc của con lắc là: \(\omega  = \sqrt {\dfrac{k}{m}}  = \sqrt {\dfrac{{40}}{{0,4}}}  = 10\,\,\left( {rad/s} \right)\)

Trong thời gian \(\dfrac{{7\pi }}{{30}}\,\,s\), vecto quay được góc:

\(\Delta \varphi  = \omega .\Delta t = 10.\dfrac{{7\pi }}{{30}} = \dfrac{{7\pi }}{3} = 2\pi  + \dfrac{\pi }{3}\,\,\left( {rad} \right)\)

Ta có vòng trong lượng giác:

 

Từ vòng tròn lượng giác ta thấy tại thời điểm \(\dfrac{{7\pi }}{{30}}\,\,s\), vật có li độ \(x = 4\,\,cm\)

Áp dụng công thức độc lập với thời gian ta có:

\({x^2} + \dfrac{{{v^2}}}{{{\omega ^2}}} = {A^2} \Rightarrow v = \omega .\sqrt {{A^2} - {x^2}}  = 10.\sqrt {{8^2} - {4^2}}  = 40\sqrt 3 \,\,\left( {cm/s} \right)\)

Giữ điểm chính giữa lò xo, li độ mới của vật tại điểm giữ là: \(x' = \dfrac{x}{2} = 2\,\,\left( {cm} \right)\)

Độ cứng của lò xo khi đó: \(k'x' = kx \Rightarrow k' = \dfrac{{kx}}{{x'}} = 2k = 80\,\,\left( {N/m} \right)\)

Tần số góc của con lắc mới là: \(\omega ' = \sqrt {\dfrac{{k'}}{m}}  = \sqrt {\dfrac{{80}}{{0,4}}}  = 10\sqrt 2 \,\,\left( {rad/s} \right)\)

Giữ lò xo, vận tốc của vật không thay đổi. Áp dụng công thức độc lập với thời gian, ta có:

\(x{'^2} + \dfrac{{{v^2}}}{{\omega {'^2}}} = A{'^2} \Rightarrow {2^2} + \dfrac{{{{\left( {40\sqrt 3 } \right)}^2}}}{{{{\left( {10\sqrt 2 } \right)}^2}}} = A{'^2} \Rightarrow A' = 2\sqrt 7 \,\,\left( {cm} \right)\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com