Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB = 2a, BC = a, tam giác đều SAB nằm trên mặt

Câu hỏi số 406772:
Vận dụng

Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB = 2a, BC = a, tam giác đều SAB nằm trên mặt phẳng vuông góc với đáy. Khoảng cách giữa BC và SD là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:406772
Phương pháp giải

- Gọi H là trung điểm của AB, chứng minh \(SH \bot \left( {ABCD} \right)\).

- Khoảng cách giữa hai đường thẳng chéo nhau là khoảng cách từ đường thẳng này đến mặt phẳng chứa đường thẳng kia và song song với đường thẳng này. Từ đó chứng minh \(d\left( {BC;SD} \right) = d\left( {BC;\left( {SAD} \right)} \right) = d\left( {B;\left( {SAD} \right)} \right)\).

- Sử dụng phương pháp đổi điểm: \(AB \cap \left( P \right) = M \Rightarrow \dfrac{{d\left( {A;\left( P \right)} \right)}}{{d\left( {B;\left( P \right)} \right)}} = \dfrac{{AM}}{{BM}}\), đổi về tính khoảng cách từ chân đường vuông góc.

- Áp dụng hệ thức lượng trong tam giác vuông để tính khoảng cách.

Giải chi tiết

Gọi H là trung điểm của AB, do tam giác SAB đều nên \(SH \bot AB\).

Ta có: \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\SH \subset \left( {SAB} \right),\,\,SH \bot AB\end{array} \right.\) \( \Rightarrow SH \bot \left( {ABCD} \right)\).

Vì ABCD là hình chữ nhật nên \(BC\parallel AD \Rightarrow BC\parallel \left( {SAD} \right) \supset SD\).

\( \Rightarrow d\left( {BC;SD} \right) = d\left( {BC;\left( {SAD} \right)} \right) = d\left( {B;\left( {SAD} \right)} \right)\).

Ta có: \(BH \cap \left( {SAD} \right) = A \Rightarrow \dfrac{{d\left( {B;\left( {SAD} \right)} \right)}}{{d\left( {H;\left( {SAD} \right)} \right)}} = \dfrac{{BA}}{{HA}} = 2\).

\( \Rightarrow d\left( {B;\left( {SAD} \right)} \right) = 2d\left( {H;\left( {SAD} \right)} \right)\).

Trong (SAB) kẻ \(HK \bot SA\,\,\left( {K \in SA} \right)\) ta có:

 \(\begin{array}{l}\left\{ \begin{array}{l}AD \bot SH\\AD \bot AB\end{array} \right. \Rightarrow AD \bot \left( {SAB} \right) \Rightarrow AD \bot HK\\\left\{ \begin{array}{l}HK \bot SA\\HK \bot AD\end{array} \right. \Rightarrow HK \bot \left( {SAD} \right)\\ \Rightarrow d\left( {H;\left( {SAD} \right)} \right) = HK\end{array}\)

Tam giác SAB đều cạnh 2a nên \(SH = \dfrac{{2a\sqrt 3 }}{2} = a\sqrt 3 \).

Áp dụng hệ thức lượng trong tam giác vuông SAH có: \(HK = \dfrac{{SH.AH}}{{\sqrt {S{H^2} + A{H^2}} }} = \dfrac{{a\sqrt 3 .a}}{{\sqrt {3{a^2} + {a^2}} }} = \dfrac{{a\sqrt 3 }}{2}\).

Vậy \(d\left( {BC;SD} \right) = 2HK = a\sqrt 3 \).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com