Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình lập phương ABCD.A’B’C’D’ nội tiếp một mặt cầu có bán kính bằng 1. Tính thể

Câu hỏi số 408230:
Thông hiểu

Cho hình lập phương ABCD.A’B’C’D’ nội tiếp một mặt cầu có bán kính bằng 1. Tính thể tích hình lập phương đó.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:408230
Phương pháp giải

Hình lập phương ABCD.A’B’C’D’ nội tiếp mặt cầu bán kính \(R = \dfrac{{A'C}}{2} = \dfrac{{\sqrt {AA{'^2} + A{D^2} + A{B^2}} }}{2}.\)

Thể tích khối lập phương cạnh \(a\) là: \(V = {a^3}.\)

Giải chi tiết

Gọi cạnh của hình lập phương là \(a.\)

Bán kính mặt cầu ngoại tiếp hình lập phương đã cho là \(1\) \( \Rightarrow A'C = 2.\)

Áp dụng định lý Pitago cho \(\Delta ABC\) vuông tại \(A\) ta có: \(A{C^2} = A{D^2} + A{B^2} = {a^2} + {a^2} = 2{a^2}.\)

Áp dụng định lý Pitago cho \(\Delta AA'C\) vuông tại \(A\) ta có: \(A'{C^2} = A{C^2} + AA{'^2} = 2{a^2} + {a^2} = 3{a^2}\)

\(\begin{array}{l} \Rightarrow 3{a^2} = {2^2} \Leftrightarrow {a^2} = \dfrac{4}{3} \Leftrightarrow a = \dfrac{2}{{\sqrt 3 }}.\\ \Rightarrow V = {\left( {\dfrac{2}{{\sqrt 3 }}} \right)^3} = \dfrac{8}{{3\sqrt 3 }}.\end{array}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com