Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Tung một con súc sắc đồng chất cân đối ba lần. Tính xác suất để có ít nhất một lần

Câu hỏi số 408269:
Thông hiểu

Tung một con súc sắc đồng chất cân đối ba lần. Tính xác suất để có ít nhất một lần xuất hiện mặt có 6 chấm:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:408269
Phương pháp giải

- Tính số phần tử của không gian mẫu.

- Gọi A là biến cố: “Có ít nhất một lần xuất hiện mặt có 6 chấm”, suy ra biến cố đối \(\bar A\).

- Tính số phần tử của biến cố \(\bar A\), từ đó tính xác suất của biến cố \(\bar A\) là \(P\left( {\bar A} \right) = \dfrac{{n\left( {\bar A} \right)}}{{n\left( \Omega  \right)}}\).

- Tính xác suất của biến cố A: \(P\left( A \right) = 1 - P\left( {\bar A} \right).\)

Giải chi tiết

Tung một con súc sắc đồng chất cân đối ba lần ta có không gian mẫu \(n\left( \Omega  \right) = {6^3} = 216\).

Gọi A là biến cố: “Có ít nhất một lần xuất hiện mặt có 6 chấm”.

\( \Rightarrow \) Biến cố đối \(\bar A\): “Không có lần nào xuất hiện mặt 6 chấm”.

+ Lần tung thứ nhất có 5 khả năng.

+ Lần tung thứ hai có 5 khả năng.

+ Lần tung thứ ba có 5 khả năng.

\( \Rightarrow n\left( {\bar A} \right) = {5^3} \Rightarrow P\left( {\bar A} \right) = \dfrac{{{5^3}}}{{{6^3}}} = {\left( {\dfrac{5}{6}} \right)^3}\).

Vậy \(P\left( A \right) = 1 - P\left( {\bar A} \right) = 1 - {\left( {\dfrac{5}{6}} \right)^3}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com